Non-Lie top tunneling and quantum bilocalization in planar Penning trap
- 作者: Karasev M.V.1, Novikova E.M.1, Vybornyi E.V.1
-
隶属关系:
- Laboratory for Mathematical Methods in Natural Science
- 期: 卷 100, 编号 5-6 (2016)
- 页面: 807-819
- 栏目: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/149880
- DOI: https://doi.org/10.1134/S0001434616110201
- ID: 149880
如何引用文章
详细
We describe how a top-like quantum Hamiltonian over a non-Lie algebra appears in the model of the planar Penning trap under the breaking of its axial symmetry (inclination of the magnetic field) and tuning parameters (electric voltage, magnetic field strength and inclination angle) at double resonance. For eigenvalues of the quantum non-Lie top, under a specific variation of the voltage on the trap electrode, there exists an avoided crossing effect and a corresponding effect of bilocalization of quantum states on pairs of closed trajectories belonging to common energy levels. This quantum tunneling happens on the symplectic leaves of the symmetry algebra, and hence it generates a tunneling of quantum states of the electron between the 3D-tori in the whole 6D-phase space. We present a geometric formula for the leading term of asymptotics of the tunnel energy-splitting in terms of symplectic area of membranes bounded by invariantly defined instantons.
作者简介
M. Karasev
Laboratory for Mathematical Methods in Natural Science
编辑信件的主要联系方式.
Email: karasev.mikhail@gmail.com
俄罗斯联邦, Moscow
E. Novikova
Laboratory for Mathematical Methods in Natural Science
Email: karasev.mikhail@gmail.com
俄罗斯联邦, Moscow
E. Vybornyi
Laboratory for Mathematical Methods in Natural Science
Email: karasev.mikhail@gmail.com
俄罗斯联邦, Moscow
补充文件
