When does the zero-one k-law fail?


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The limit probabilities of the first-order properties of a random graph in the Erdős–Rényi model G(n, nα), α ∈ (0, 1), are studied. A random graph G(n, nα) is said to obey the zero-one k-law if, given any property expressed by a formula of quantifier depth at most k, the probability of this property tends to either 0 or 1. As is known, for α = 1− 1/(2k−1 + a/b), where a > 2k−1, the zero-one k-law holds. Moreover, this law does not hold for b = 1 and a ≤ 2k−1 − 2. It is proved that the k-law also fails for b > 1 and a ≤ 2k−1 − (b + 1)2.

作者简介

M. Zhukovskii

Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: zhukmax@gmail.com
俄罗斯联邦, Dolgoprudnyi

A. Medvedeva

Derzhavin Tambov State University

Email: zhukmax@gmail.com
俄罗斯联邦, Tambov

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016