Dynamic Properties of a Nonlinear Viscoelastic Kirchhoff-Type Equation with Acoustic Control Boundary Conditions. I


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, we consider the nonlinear viscoelastic Kirchhoff-type equation

\({u_{tt}} - M(||\nabla u||_2^2)\Delta u + \int_0^t {h(t - s)\Delta u(s)ds + a|{u_t}{|^{m - 2}}{u_t} = |u{|^{p - 2}}u} \)
with initial conditions and acoustic boundary conditions. We show that, depending on the properties of convolution kernel h at infinity, the energy of the solution decays exponentially or polynomially as t → + ∞. Our approach is based on integral inequalities and multiplier techniques. Instead of using a Lyapunov-type technique for some perturbed energy, we concentrate on the original energy, showing that it satisfies a nonlinear integral inequality which, in turn, yields the final decay estimate.

Sobre autores

Fushan Li

Qufu Normal University

Autor responsável pela correspondência
Email: fushan99@163.com
República Popular da China, Qufu, 273165

Shuai Xi

Qufu Normal University

Autor responsável pela correspondência
Email: shuai_xi@sina.com
República Popular da China, Qufu, 273165

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019