On stability of closedness and self-adjointness for 2 × 2 operator matrices


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Consider an operator which is defined in Banach or Hilbert space X = X1 × X2 by the matrix \(L = \left( {\begin{array}{*{20}{c}}A&B \\ C&D \end{array}} \right)\), where the linear operators A: X1X1, B: X2X1, C: X1X2, and D: X2X2 are assumed to be unbounded. In the case when the operators C and B are relatively bounded with respect to the operators A and D, respectively, new conditions of closedness or closability are obtained for the operator L. For the operator L acting in a Hilbert space, analogs of Rellich–Kato theorems on the stability of self-adjointness are obtained.

作者简介

A. Shkalikov

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: shkalikov@mi.ras.ru
俄罗斯联邦, Moscow

C. Trunk

Technische Universität Ilmenau

Email: shkalikov@mi.ras.ru
德国, Ilmenau

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016