An extremal problem for the derivative of a rational function
- Авторлар: Dubinin V.N.1,2
-
Мекемелер:
- Far-Eastern Federal University
- Institute for Applied Mathematics, Far-Eastern Branch
- Шығарылым: Том 100, № 5-6 (2016)
- Беттер: 714-719
- Бөлім: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/149847
- DOI: https://doi.org/10.1134/S0001434616110079
- ID: 149847
Дәйексөз келтіру
Аннотация
Erdős’ well-known problem on the maximum absolute value of the derivative of a polynomial on a connected lemniscate is extended to the case of a rational function. Moreover, under the assumption that certain lemniscates are connected, a sharp upper bound for the absolute value of the derivative of a rational function at any point in the plane different from the poles is found. The role of the extremal function is played by an appropriate Zolotarev fraction.
Негізгі сөздер
Авторлар туралы
V. Dubinin
Far-Eastern Federal University; Institute for Applied Mathematics, Far-Eastern Branch
Хат алмасуға жауапты Автор.
Email: dubinin@iam.dvo.ru
Ресей, Vladivostok; Vladivostok
Қосымша файлдар
