Equitable colorings of nonuniform hypergraphs


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The well-known extremal problem on hypergraph colorings is studied. We investigate whether it is possible to color a hypergraph with a fixed number of colors equitably, i.e., so that, on the one hand, no edge is monochromatic and, on the other hand, the cardinalities of the color classes are almost the same. It is proved that if H = (V,E) is a simple hypergraph in which the least cardinality of an edge equals k, |V| = n, r|n, and

\(\sum\limits_{e \in E} {{r^{1 - \left| e \right|}}} \leqslant c\sqrt k ,\)
where c > 0 is an absolute constant, then there exists an equitable r-coloring of H.

作者简介

I. Shirgazina

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: IShirgazina@yandex.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016