Solvability of the Operator Riccati Equation in the Feshbach Case


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let L be a bounded 2 × 2 block operator matrix whose main-diagonal entries are self-adjoint operators. It is assumed that the spectrum of one of these entries is absolutely continuous, being presented by a single finite band, and the spectrum of the other main-diagonal entry is entirely contained in this band. We establish conditions under which the operator matrix L admits a complex deformation and, simultaneously, the operator Riccati equations associated with the deformed L possess bounded solutions. The same conditions also ensure a Markus–Matsaev-type factorization of one of the initial Schur complements analytically continued onto the unphysical sheet(s) of the complex plane of the spectral parameter. We prove that the operator roots of this Schur complement are explicitly expressed through the respective solutions to the deformed Riccati equations.

Sobre autores

S. Albeverio

Institut für Angewandte Mathematik; Hausdorff Center for Mathematics

Autor responsável pela correspondência
Email: albeverio@iam.uni-bonn.de
Alemanha, Bonn, D-53115; Bonn, D-53115

A. Motovilov

Bogoliubov Laboratory of Theoretical Physics; Dubna State University

Autor responsável pela correspondência
Email: motovilv@theor.jinr.ru
Rússia, Dubna, Moscow Region, 141980; Dubna, Moscow Region, 141980

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019