Orthogonal Bases of Involution in Hadamard Algebras


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The notion of a Hadamard decomposition of a semisimple associative finite-dimensional complex algebra generalizes the notion of classical Hadamard matrices, which correspond to the case of commutative algebras. Algebras admitting a Hadamard decomposition are said to be Hadamard. Images of orthogonal bases of involution in Hadamard algebras under the canonical projections of these algebras onto their simple components are studied. Using a technique related to the study of central primitive idempotents of Hadamard algebras, we obtain a necessary condition for a family of involutory matrices of fixed order to be such an image. It is also shown that this necessary condition is not sufficient. We also present new proofs of results proved earlier.

Sobre autores

D. Ivanov

Tuer State University

Autor responsável pela correspondência
Email: dnivanov59@yandex.ru
Rússia, Tuer, 170102

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019