Certain Partial Conservativeness Properties of Intuitionistic Set Theory with the Principle of Double Complement of Sets


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The Zermelo–Fraenkel set theory with the underlying intuitionistic logic (for brevity, we refer to it as the intuitionistic Zermelo–Fraenkel set theory) in a two-sorted language (where the sort 0 is assigned to numbers and the sort 1, to sets) with the collection scheme used as the replacement scheme of axioms (the ZFI2C theory) is considered. Some partial conservativeness properties of the intuitionistic Zermelo–Fraenkel set theory with the principle of double complement of sets (DCS) with respect to a certain class of arithmetic formulas (the class all so-called AEN formulas) are proved. Namely, let T be one of the theories ZFI2C and ZFI2C + DCS. Then (1) the theory T+ECT is conservative over T with respect to the class of AEN formulas; (2) the theory T+ECT+M is conservative over T+M{su−} with respect to the class of AEN formulas. Here ECT stands for the extended Church’s thesis, Mis the strong Markov principle, and M{su−} is the weak Markov principle. The following partial conservativeness properties are also proved: (3) T+ECT+M is conservative over T with respect to the class of negative arithmetic formulas; (4) the classical theory ZF2 is conservative over ZFI2C with respect to the class of negative arithmetic formulas.

作者简介

A. Vladimirov

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: moskvich7707@mail.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018