A Logarithmic Inequality
- 作者: Kalachev G.V.1, Sadov S.Y.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 103, 编号 1-2 (2018)
- 页面: 209-220
- 栏目: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150580
- DOI: https://doi.org/10.1134/S0001434618010224
- ID: 150580
如何引用文章
详细
The inequality
\(\ln {\kern 1pt} \ln \left( {r - \ln r} \right) + 1 < \mathop {\min }\limits_{0 < x \leqslant r - 1} \left( {\ln x + {x^{ - 1}}\ln \left( {r - x} \right)} \right) < \ln {\kern 1pt} \ln \left( {r - \ln \left( {r - {2^{ - 1}}\ln r} \right)} \right) + 1,\)![]()
where r > 2, is proved. A combinatorial optimization problem which involves the function to be minimized is described.作者简介
G. Kalachev
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: gleb.kalachev@yandex.ru
俄罗斯联邦, Moscow
S. Sadov
Lomonosov Moscow State University
Email: gleb.kalachev@yandex.ru
俄罗斯联邦, Moscow
补充文件
