A Logarithmic Inequality


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The inequality

\(\ln {\kern 1pt} \ln \left( {r - \ln r} \right) + 1 < \mathop {\min }\limits_{0 < x \leqslant r - 1} \left( {\ln x + {x^{ - 1}}\ln \left( {r - x} \right)} \right) < \ln {\kern 1pt} \ln \left( {r - \ln \left( {r - {2^{ - 1}}\ln r} \right)} \right) + 1,\)
where r > 2, is proved. A combinatorial optimization problem which involves the function to be minimized is described.

About the authors

G. V. Kalachev

Lomonosov Moscow State University

Author for correspondence.
Email: gleb.kalachev@yandex.ru
Russian Federation, Moscow

S. Yu. Sadov

Lomonosov Moscow State University

Email: gleb.kalachev@yandex.ru
Russian Federation, Moscow

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.