A Logarithmic Inequality
- Authors: Kalachev G.V.1, Sadov S.Y.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 103, No 1-2 (2018)
- Pages: 209-220
- Section: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150580
- DOI: https://doi.org/10.1134/S0001434618010224
- ID: 150580
Cite item
Abstract
The inequality
\(\ln {\kern 1pt} \ln \left( {r - \ln r} \right) + 1 < \mathop {\min }\limits_{0 < x \leqslant r - 1} \left( {\ln x + {x^{ - 1}}\ln \left( {r - x} \right)} \right) < \ln {\kern 1pt} \ln \left( {r - \ln \left( {r - {2^{ - 1}}\ln r} \right)} \right) + 1,\)![]()
where r > 2, is proved. A combinatorial optimization problem which involves the function to be minimized is described.About the authors
G. V. Kalachev
Lomonosov Moscow State University
Author for correspondence.
Email: gleb.kalachev@yandex.ru
Russian Federation, Moscow
S. Yu. Sadov
Lomonosov Moscow State University
Email: gleb.kalachev@yandex.ru
Russian Federation, Moscow
Supplementary files
