Finding the coefficients in the new representation of the solution of the Riemann–Hilbert problem using the Lauricella function


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The solution of the Riemann–Hilbert problem for an analytic function in a canonical domain for the case in which the data of the problem is piecewise constant can be expressed as a Christoffel–Schwartz integral. In this paper, we present an explicit expression for the parameters of this integral obtained by using a Jacobi-type formula for the Lauricella generalized hypergeometric function FD(N). The results can be applied to a number of problems, including those in plasma physics and the mechanics of deformed solids.

作者简介

S. Bezrodnykh

Federal Research Center “Computer Science and Control,”; RUDN University; Sternberg Astronomical Institute

编辑信件的主要联系方式.
Email: sbezrodnykh@mail.ru
俄罗斯联邦, Moscow; Moscow; Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017