On the additive complexity of GCD and LCM matrices


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In the paper, the additive complexity of matrices formed by positive integer powers of greatest common divisors and least common multiples of the indices of the rows and columns is considered. It is proved that the complexity of the n × n matrix formed by the numbers GCDr(i, k) over the basis {x + y} is asymptotically equal to rn log2n as n→∞, and the complexity of the n × n matrix formed by the numbers LCMr(i, k) over the basis {x + y,−x} is asymptotically equal to 2rn log2n as n→∞.

Sobre autores

S. Gashkov

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: sbgashkov@gmail.com
Rússia, Moscow

I. Sergeev

Research Institute “Kvant,”

Email: sbgashkov@gmail.com
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016