On the boundedness of generalized solutions of higher-order nonlinear elliptic equations with data from an Orlicz–Zygmund class


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In the present paper, a 2mth-order quasilinear divergence equation is considered under the condition that its coefficients satisfy the Carathéodory condition and the standard conditions of growth and coercivity in the Sobolev space Wm,p(Ω), Ω ⊂ Rn, p > 1. It is proved that an arbitrary generalized (in the sense of distributions) solution uW0m,p (Ω) of this equation is bounded if m ≥ 2, n = mp, and the right-hand side of this equation belongs to the Orlicz–Zygmund space L(log L)n−1(Ω).

Sobre autores

M. Voitovich

Institute of Mathematics; Mariupol State University; Donetsk National University

Autor responsável pela correspondência
Email: voytovich@bk.ru
Ucrânia, Kiev; Mariupol; Vinnitsa

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016