Approximation by Fourier means and generalized moduli of smoothness
- Авторлар: Runovski K.V.1
-
Мекемелер:
- Lomonosov Moscow State University
- Шығарылым: Том 99, № 3-4 (2016)
- Беттер: 564-575
- Бөлім: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/149322
- DOI: https://doi.org/10.1134/S0001434616030305
- ID: 149322
Дәйексөз келтіру
Аннотация
The quality of approximation by Fourier means generated by an arbitrary generator with compact support in the spaces Lp, 1 ≤ p ≤ +∞, of 2π-periodic pth integrable functions and in the space C of continuous 2π-periodic functions in terms of the generalized modulus of smoothness constructed froma 2π-periodic generator is studied. Natural sufficient conditions on the generator of the approximation method and values of smoothness ensuring the equivalence of the corresponding approximation error and modulus are obtained. As applications, Fourier means generated by classical kernels as well as the classical moduli of smoothness are considered.
Авторлар туралы
K. Runovski
Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: k_runov@mail.ru
Ресей, Moscow
Қосымша файлдар
