Asymptotic Solution of the Cauchy Problem for a First-Order Equation with a Small Parameter in a Banach Space. The Regular Case


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper is devoted to the study of the solution of the Cauchy problem for a first-order differential equation in a Banach space with a small parameter on the right-hand side perturbing the equation. The coefficient of the derivative of the unknown function is a Fredholm operator with index zero and one-dimensional kernel. The case of a regular pair of operator coefficients is considered. An asymptotic expansion of the solution of the problem is constructed by using a method due to Vasil’eva, Vishik, and Lyusternik. In calculating the components of the regular and boundary-layer parts of the expansion, the cascade decomposition of the equations is used. It is proved that this expansion is asymptotic. Conditions for regular degeneration are found. The behavior of the solution as the parameter tends to zero is studied.

Авторлар туралы

S. Zubova

Voronezh State University

Хат алмасуға жауапты Автор.
Email: spzubova@mail.ru
Ресей, Voronezh

V. Uskov

Voronezh State University

Email: spzubova@mail.ru
Ресей, Voronezh

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018