A hybrid fixed-point theorem for set-valued maps


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In 1955, M. A. Krasnosel’skii proved a fixed-point theorem for a single-valued map which is a completely continuous contraction (a hybrid theorem). Subsequently, his work was continued in various directions. In particular, it has stimulated the development of the theory of condensing maps (both single-valued and set-valued); the images of such maps are always compact. Various versions of hybrid theorems for set-valued maps with noncompact images have also been proved. The set-valued contraction in these versions was assumed to have closed images and the completely continuous perturbation, to be lower semicontinuous (in a certain sense). In this paper, a new hybrid fixed-point theorem is proved for any set-valued map which is the sum of a set-valued contraction and a compact set-valued map in the case where the compact set-valued perturbation is upper semicontinuous and pseudoacyclic. In conclusion, this hybrid theorem is used to study the solvability of operator inclusions for a new class of operators containing all surjective operators. The obtained result is applied to solve the solvability problem for a certain class of control systems determined by a singular differential equation with feedback.

Авторлар туралы

B. Gel’man

Voronezh State University; Peoples’ Friendship University of Russia

Хат алмасуға жауапты Автор.
Email: gelman@math.vsu.ru
Ресей, Voronezh; Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017