The product of octahedra is badly approximated in the 2,1-metric


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We prove that the Cartesian product of octahedra B1,∞n,m = B1n ×···× B1n (m factors) is poorly approximated by spaces of half dimension in the mixed norm: dN/2(B1,∞n,m, 2,1n,m) ≥ cm, N = mn. As a corollary, we find the order of linear widths of the Hölder–Nikol’skii classes Hpr(Td) in the metric of Lq in certain domains of variation of the parameters (p, q).

作者简介

Yu. Malykhin

Steklov Mathematical Institute of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: jura05@yandex.ru
俄罗斯联邦, Moscow

K. Ryutin

Lomonosov Moscow State University

Email: jura05@yandex.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017