The product of octahedra is badly approximated in the ℓ2,1-metric
- 作者: Malykhin Y.V.1, Ryutin K.S.2
-
隶属关系:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Lomonosov Moscow State University
- 期: 卷 101, 编号 1-2 (2017)
- 页面: 94-99
- 栏目: Volume 101, Number 1, January, 2017
- URL: https://journals.rcsi.science/0001-4346/article/view/149941
- DOI: https://doi.org/10.1134/S0001434617010096
- ID: 149941
如何引用文章
详细
We prove that the Cartesian product of octahedra B1,∞n,m = B1n ×···× B1n (m factors) is poorly approximated by spaces of half dimension in the mixed norm: dN/2(B1,∞n,m, ℓ2,1n,m) ≥ cm, N = mn. As a corollary, we find the order of linear widths of the Hölder–Nikol’skii classes Hpr(Td) in the metric of Lq in certain domains of variation of the parameters (p, q).
作者简介
Yu. Malykhin
Steklov Mathematical Institute of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: jura05@yandex.ru
俄罗斯联邦, Moscow
K. Ryutin
Lomonosov Moscow State University
Email: jura05@yandex.ru
俄罗斯联邦, Moscow
补充文件
