On Threshold Probability for the Stability of Independent Sets in Distance Graphs


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This paper considers the so-called distance graph G(n, r, s);its vertices can be identified with the r-element subsets of the set {1, 2,…,n}, and two vertices are joined by an edge if the size of the intersection of the corresponding subsets equals s. Note that, in the case s = 0, such graphs are known as Kneser graphs. These graphs are closely related to the Erdős-Ko-Rado problem; they also play an important role in combinatorial geometry and coding theory.

We study properties of random subgraphs of the graph G(n, r, s) in the Erdős-Rényi model, in which each edge is included in the subgraph with a certain fixed probability p independently of the other edges. It is known that if r > 2s + 1, then, for p = 1/2, the size of an independent set is asymptotically stable in the sense that the independence number of a random subgraph is asymptotically equal to that of the initial graph G(n, r, s). This gives rise to the question of how small p must be for asymptotic stability to cease. The main result of this paper is the answer to this question.

Авторлар туралы

M. Pyaderkin

Lomonosov Moscow State University; Moscow Institute of Physics and Technology (State University)

Хат алмасуға жауапты Автор.
Email: meshanya@gmail.com
Ресей, Moscow, 119991; Dolgoprudny, Moscow Oblast, 141700

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019