On S-quasinormally embedded subgroups of finite groups
- Авторы: Shen Z.1, Zhang J.2, Chen G.3, Chen Y.4
-
Учреждения:
- Department of Mathematics of College of Science
- School of Science
- Shandong Water Polytechnic
- College of Information and Electrical Engineering
- Выпуск: Том 101, № 3-4 (2017)
- Страницы: 735-740
- Раздел: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150031
- DOI: https://doi.org/10.1134/S0001434617030312
- ID: 150031
Цитировать
Аннотация
A subgroup H of a group G is said to be S-quasinormally embedded in G if for every Sylow subgroup P of H, there is an S-quasinormal subgroup K in G such that P is also a Sylow subgroup of K. Groups with certain S-quasinormally embedded subgroups of prime power order are studied. We prove Theorems 1.4, 1.5 and 1.6 of [10] remain valid if we omit the assumption that G is a group of odd order.
Ключевые слова
Об авторах
Z. Shen
Department of Mathematics of College of Science
Автор, ответственный за переписку.
Email: Zhencai688@sina.com
Китай, Beijing
J. Zhang
School of Science
Email: chyingyi@126.com
Китай, Zigong
G. Chen
Shandong Water Polytechnic
Email: chyingyi@126.com
Китай, Rizhao
Y. Chen
College of Information and Electrical Engineering
Автор, ответственный за переписку.
Email: chyingyi@126.com
Китай, Beijing
Дополнительные файлы
