The Moutard transformation of two-dimensional Dirac operators and the conformal geometry of surfaces in four-dimensional space
- Autores: Matuev R.M.1,2, Taimanov I.A.1,2
-
Afiliações:
- Sobolev Institute of Mathematics, Siberian Branch
- Novosibirsk National Research State University
- Edição: Volume 100, Nº 5-6 (2016)
- Páginas: 835-846
- Seção: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/149889
- DOI: https://doi.org/10.1134/S0001434616110237
- ID: 149889
Citar
Resumo
The Moutard transformation for the two-dimensional Dirac operator with complexvalued potential is constructed. It is shown that this transformation binds the potentials of Weierstrass representations of the surfaces related by the composition of inversion and reflection with respect to the axis. An explicit analytic example of a transformation leading to the appearance of double points on the spectral curve of the Dirac operator is described analytically.
Sobre autores
R. Matuev
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk National Research State University
Autor responsável pela correspondência
Email: rmatuev@yandex.ru
Rússia, Novosibirsk; Novosibirsk
I. Taimanov
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk National Research State University
Email: rmatuev@yandex.ru
Rússia, Novosibirsk; Novosibirsk
Arquivos suplementares
