Almost everywhere summability of Fourier series with indication of the set of convergence


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, the following problem is studied. For what multipliers {λk,n} do the linear means of the Fourier series of functions fL1[−π, π],

\(\begin{array}{*{20}c}
{\sum\limits_{k = - \infty }^\infty {\lambda _{k,n} \widehat{f_k }e^{ikx} ,} } & {where \widehat{f_k } is the kth Fourier coefficient, } \\

\end{array} \)
, converge as n→∞ at all points at which the derivative of the function ∫0xf exists? In the case λk,n = (1 − |k|/(n + 1)), a criterion of the convergence of the (C, 1)-means and, in the general case λk,n = ϕ(k/(n + 1)), a sufficient condition of the convergence at all such points (i.e., almost everywhere) are obtained. In the general case, the answer is given in terms of whether ϕ(x) and ′(x) belong to the Wiener algebra of absolutely convergent Fourier integrals. New examples are given.

Sobre autores

R. Trigub

Sumy State University

Autor responsável pela correspondência
Email: roald.trigub@gmail.com
Ucrânia, Sumy

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016