MicroRNA regulatory mechanisms in atherosclerosis

封面

如何引用文章

全文:

详细

Atherosclerosis is a chronic inflammatory disease of the arterial wall, characterized by a change in the intima of the arteries in the form of focal lipid deposits and the formation of a fibrous lid. Atherosclerosis is considered as the main cause of myocardial infarction, ischemic stroke and chronic lower limb ischemia. The pathogenesis of atherosclerosis is complex, and genetic mechanisms of atherosclerosis have not been fully investigated. The recent studies have shown that microRNAs (miRNAs) can play a role in the development of atherosclerosis. MiRNAs are short, non-coding RNA molecules 18–22 nucleotides in length that suppress gene expression at the post-transcriptional level by binding to the 3ʹ-untranslated region of mRNA targets. MiRNAs are involved in virtually all biological processes, including cell proliferation, apoptosis, and cell differentiation. MiRNAs control aging and dysfunction of endothelial cells, proliferation and migration of vascular smooth muscle cells, as well as cytokine synthesis and polarization of macrophages. In this paper, we focus on how miRNAs can influence the pathogenesis of atherosclerosis.

作者简介

Ilgiz Gareev

Bashkir State Medical University

Email: ilgiz_gareev@mail.ru
ORCID iD: 0000-0002-4965-0835
俄罗斯联邦, Ufa

Ozal Beylerli

Bashkir State Medical University

编辑信件的主要联系方式.
Email: obeylerli@mail.ru
ORCID iD: 0000-0002-6149-5460

Postgraduate Student, Department of Urology

俄罗斯联邦, Ufa

A. Alyshov

Republican Cardiology Center

Email: obeylerli@mail.ru
俄罗斯联邦, Ufa

参考

  1. Wang H, Abajobir AA, Abate KH, et al. Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1084-1150. https:// doi.org/10.1016/s0140-6736(17)31833-0.
  2. Harris TA, Yamakuchi M, Ferlito M, et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A. 2008;105(5):1516-1521. https://doi.org/10.1073/pnas.0707493105.
  3. Zhu N, Zhang D, Chen S, et al. Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis. 2011;215(2): 286-293. https://doi.org/10.1016/j.atherosclerosis.2010.12.024.
  4. Suarez Y, Wang C, Manes TD, Pober JS. Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J Immunol. 2010;184(1):21-25. https://doi.org/ 10.4049/jimmunol.0902369.
  5. Liao YC, Wang YS, Guo YC, et al. Let-7g improves multiple endothelial functions through targeting transforming growth factor-beta and SIRT-1 signaling. J Am Coll Cardiol. 2014;63(16):1685-1694. https://doi.org/10.1016/j.jacc. 2013.09.069.
  6. Sun X, He S, Wara AKM, et al. Systemic delivery of microRNA-181b inhibits nuclear factor-kappa B activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circ Res. 2014;114(1):32-40. https://doi.org/10.1161/CIRCRESAHA.113.302089.
  7. Cheng HS, Sivachandran N, Lau A, et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med. 2013;5(7):1017-1034. https://doi.org/10.1002/emmm.201202318.
  8. Loyer X, Potteaux S, Vion AC, et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res. 2014;114(3):434-443. https://doi.org/10.1161/CIRCRESAHA.114.302213.
  9. Zuo K, Li M, Zhang X, et al. MiR-21 suppresses endothelial progenitor cell proliferation by activating the TGFbeta signaling pathway via downregulation of WWP1. Int J Clin Exp Pathol. 2015;8(1):414-422. 4348897.
  10. Schober A, Nazari-Jahantigh M, Wei Y, et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med. 2014;20(4):368-376. https://doi.org/10.1038/nm.3487.
  11. Zhang X, Liu X, Shang H, et al. Monocyte chemoattractant protein-1 induces endothelial cell apoptosis in vitro through a p53-dependent mitochondrial pathway. Acta Biochim Biophys Sin (Shanghai). 2011;43(10):787-795. https://doi.org/10.1093/abbs/gmr072.
  12. Menghini R, Casagrande V, Cardellini M, et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation. 2009;120(15):1524-1532. https://doi.org/10.1161/CIRCULATIONAHA.109.864629.
  13. Ito T, Yagi S, Yamakuchi M. MicroRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun. 2010;398(4):735-740. https://doi.org/10.1016/j.bbrc. 2010.07.012.
  14. Vasa-Nicotera M, Chen H, Tucci P, et al. miR-146a is modulated in human endothelial cell with aging. Atherosclerosis. 2011;217(2):326-330. https://doi.org/10.1016/ j.atherosclerosis.2011.03.034.
  15. Chen L, Lu MH, Zhang D, et al. miR-1207-5p and miR-1266 suppress gastric cancer growth and invasion by targeting telomerase reverse transcriptase. Cell Death Dis. 2014;5:e1034. https://doi.org/10.1038/cddis.2013.553.
  16. Li M, Chen SM, Chen C, et al. microRNA2993p inhibits laryngeal cancer cell growth by targeting human telomerase reverse transcriptase mRNA. Mol Med Rep. 2015;11(6):4645-4649. https://doi.org/10.3892/mmr. 2015.3287.
  17. Zhao Q, Zhai YX, Liu HQ, et al. MicroRNA-491-5p suppresses cervical cancer cell growth by targeting hTERT. Oncol Rep. 2015;34(2):979-986. https://doi.org/10.3892/or.2015.4013.
  18. Li TJ, Chen YL, Gua CJ, et al. MicroRNA 181b promotes vascular smooth muscle cells proliferation through activation of PI3K and MAPK pathways. Int J Clin Exp Pathol. 2015;8(9):10375-10384. 4637560.
  19. Qi L, Zhi J, Zhang T, et al. Inhibition of microRNA-25 by tumor necrosis factor alpha is critical in the modulation of vascular smooth muscle cell proliferation. Mol Med Rep. 2015;11(6):4353-4358. https://doi.org/10.3892/mmr.2015.3329.
  20. Leeper NJ, Raiesdana A, Kojima Y, et al. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol. 2011;226(4):1035-1043. https://doi.org/ 10.1002/jcp.22422.
  21. Xie B, Zhang C, Kang K, Jiang S. miR-599 inhibits vascular smooth muscle cells proliferation and migration by targeting TGFB2. Plos One. 2015;10(11):e0141512. https://doi.org/10.1371/journal.pone.0141512.
  22. Kee HJ, Kim GR, Cho SN, et al. miR-18a-5p MicroRNA increases vascular smooth muscle cell differentiation by downregulating syndecan 4. Korean Circ J. 2014;44(4):255-263. https://doi.org/10.4070/kcj.2014.44. 4.255.
  23. Liao XB, Zhang ZY, Yuan K, et al. MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells. Endocrinology. 2013;154(9):3344-3352. https://doi.org/10.1210/en.2012-2236.
  24. Ponomarev ED, Veremeyko T, Barteneva N, et al. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med. 2011;17(1):64-70. https://doi.org/10.1038/nm.2266.
  25. Zhuang G, Meng C, Guo X, et al. A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation. 2012;125(23):2892-2903. https://doi.org/10.1161/CIRCULATIONAHA.111.087817.
  26. Wei Y, Nazari-Jahantigh M, Chan L, et al. The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155-dependent pathway during atherosclerosis. Circulation. 2013;127(15):1609-1619. https://doi.org/10.1161/CIRCULATIONAHA.112.000736.
  27. He PP, Ouyang XP, Tang YY, et al. MicroRNA-590 attenuates lipid accumulation and pro-inflammatory cytokine secretion by targeting lipoprotein lipase gene in human THP-1 macrophages. Biochimie. 2014;106:81-90. https://doi.org/10.1016/j.biochi.2014.08.003.
  28. Yang K, He YS, Wang XQ, et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett. 2011;585(6):854-860. https://doi.org/10.1016/ j.febslet.2011.02.009.
  29. Ye J, Guo R, Shi Y, et al. miR-155 regulated inflammation response by the SOCS1-STAT3-PDCD4 axis in atherogenesis. Mediators Inflamm. 2016;2016:8060182. https://doi.org/10.1155/2016/8060182.
  30. Wu C, Gong Y, Yuan J, et al. microRNA-181a represses ox-LDL-stimulated inflammatory response in dendritic cell by targeting c-Fos. J Lipid Res. 2012;53(11):2355-2363. https://doi.org/10.1194/jlr.M028878.
  31. Yang L, Boldin MP, Yu Y, et al. miR-146a controls the resolution of T cell responses in mice. J Exp Med. 2012;209(9):1655-1670. https://doi.org/10.1084/jem. 20112218.
  32. Lovren F, Pan Y, Quan A, et al. MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation. 2012;126(11 Suppl 1):S81-90. https://doi.org/10.1161/CIRCULATIONAHA.111.084186.
  33. Boon RA, Seeger T, Heydt S, et al. MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circ Res. 2011;109(10):1115-1119. https://doi.org/10.1161/CIRCRESAHA.111.255737.
  34. Castoldi G, Di Gioia CR, Bombardi C, et al. MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J Cell Physiol. 2012;227(2):850-856. https://doi.org/10.1002/jcp.22939.
  35. Zernecke A, Bidzhekov K, Noels H, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009;2(100):ra81. https://doi.org/10.1126/scisignal. 2000610.
  36. Ma F, Xu S, Liu X, et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat Immunol. 2011;12(9):861-869. https://doi.org/10.1038/ni.2073.
  37. Fan X, Wang E, Wang X, et al. MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs. Exp Mol Pathol. 2014;96(2):242-249. https://doi.org/10.1016/j.yexmp.2014.02.009.
  38. Di Gregoli K, Jenkins N, Salter R, et al. MicroRNA-24 regulates macrophage behavior and retards atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;34(9):1990-2000. https://doi.org/10.1161/ATVBAHA.114.304088.
  39. Wei Y, Zhu M, Corbalan-Campos J, et al. Regulation of Csf1r and Bcl6 in macrophages mediates the stage-specific effects of microRNA-155 on atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35(4):796-803. https://doi.org/10.1161/ATVBAHA.114.304723.
  40. Das A, Ganesh K, Khanna S, et al. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J Immunol. 2014;192(3):1120-1129. https://doi.org/10.4049/jimmunol.1300613.
  41. Yvan-Charvet L, Pagler TA, Seimon TA, et al. ABCA1 and ABCG1 protect against oxidative stress-induced macrophage apoptosis during efferocytosis. Circ Res. 2010;106(12):1861-1869. https://doi.org/10.1161/CIRCRESAHA.110.217281.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Gareev I.F., Beylerli O., Alyshov A.B., 2020

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

##common.cookie##