Pro-inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis

封面

如何引用文章

全文:

详细

The review summarizes the current understanding of the role of cytokines in the pathogenesis of osteoarthritis. The imbalance of pro-inflammatory and anti-inflammatory cytokines in the joint tissues leads to the development of inflammation and cartilage damage, which leads to progressive degeneration of the joints.

作者简介

Kirill Raymuev

North-Western State Medical University named after I.I. Mechnikov

编辑信件的主要联系方式.
Email: r-kn@mail.ru
ORCID iD: 0000-0002-0559-2899
SPIN 代码: 1907-1669

кандидат медицинских наук доцент кафедры терапии и эндокринологии

俄罗斯联邦, 41, Kirochnaya street, Saint-Petersburg, 191015

参考

  1. Мазуров В.И., Трофимова А.С., Трофимов Е.А. Факторы риска и некоторые аспекты патогенеза остео артрита // Вестник СЗГМУ им. И.И. Мечникова. – 2016. – № 2. – С. 116–125. [Mazurov VI, Trofimova AS, Trofimov EA. Faktory riska I nekotorye aspekty patogeneza osteoartrita. Herald of North-Western State Medical University named after I.I. Mechnikov. 2016;(2):116-125. (In Russ.)]
  2. Лила А.М. Остеоартрит // Ревматология. Фармакотерапия без ошибок: руководство для врачей / Под ред. В.И. Мазурова, О.М. Лесняк. – М.: Е-ното, 2017. – 528 с. [Lila AM. Osteoartrit. In: Revmatologiya. Farmakoterapiya bez oshibok: rukovodstvo dlya vrachei. Ed by V.I. Mazurova, O.M. Lesnyak. Moscow: E-noto; 2017. 528 p. (In Russ.)]
  3. Haseeb А, Haggi T. Immunopathogenesis of osteoarthritis. Clin Immunol. 2013;146(3):185-196. doi: 10.1016/j.clim.2012.12.011.
  4. Goldring MB, Otero M. Inflammation in osteoarthritis. Current Opinion in Rheumatology. 2011;23(5):471-478. doi: 10.1097/BOR.0b013e328349c2b1.
  5. Dinarello CA. Overview of the interleukin-1 family of ligands and receptors. Semin Immunol. 2013;25(6):389-393. doi: 10.1016/j.smim.2013.10.001.
  6. de Lange-Brokaar BJ, Ioan-Facsinay A, van Osch GJ, et al. Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. Osteoarthritis Cartilage. 2012;20(12):1484-1499. doi: 10.1016/j.joca.2012.08.027.
  7. Sohn DH, Sokolove J, Sharpe O, et al. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Research and Therapy. 2012;14(1):R7. doi: 10.1186/ar3555.
  8. Boraschi D, Tagliabue A. The interleukin-1 receptor family. Seminars in Immunology. 2013;25(6):394-407. doi: 10.1016/j.smim.2013.10.023.
  9. Sadouk MB, Pelletier JP, Tardif G, et al. Human synovial fibroblasts coexpress IL-1 receptor type I and type II mRNA: the increased level of the IL-1 receptor in osteoarthritic cells is related to an increased level of the type I receptor. Laboratory Investigation. 1995;73(3):347-355.
  10. Kawai T, Akira S. TLR signaling. Seminars in Immunology. 2007;19(1):24-32.
  11. Roman-Blas JA, Jimenez SA. NF-κB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis and Cartilage. 2006;14(9):839-848. doi: 10.1016/j.joca.2006.04.008.
  12. Marcu KB, Otero M, Olivotto E, et al. NF-κB signaling: multiple angles to target OA. Current Drug Targets. 2010;11(5):599-613.
  13. Shakibaei M, Shulze-Tanzil G, John T, et al. Curcumin protects human chondrocytes from IL-1β-induced inhibition of collagen type II and β1-integrin expression and activition of caspase-3: an immunomorphological study. Annals of Anatomy. 2005;187(5-6):487-497.
  14. Самойлов В.В., Мироманов А.М., Самойлова С.И. Значение цитокинов в патогенезе остеоартроза // Забайкальский медицинский вестник. – 2014. – № 2. – С. 119–125. [Samoilov VV, Miromanov AM, Samoi lova SI. Znachenie tsitokinov v patogeneze osteo artroza. Zabaikal’skii meditsinskii vestnik. 2014;(2):199-125. (In Russ.)]
  15. Verma P, Dalal K. ADAMTS-4 and ADAMTS-5: key enzymes in osteoarthritis. Journal of Cellular Biochemistry. 2011;112(12):3507-3514. doi: 10.1002/jcb.23298.
  16. López-Armada MJ, Carames B, Lires Dean M, et al. Cytokines, tumor necrosis factor-α and interleukin-1β, differentially regulate apoptosis in osteoarthritis cultured human chondrocytes. Osteoarthritis and Cartilage. 2006;14(7):660-669. doi: 10.1016/j.joca.2006.01.005.
  17. Afonso V, Champy R, Mitrovic D, et al. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine. 2007;74(4):324-329. doi: 10.1016/j.jbspin.2007.02.002.
  18. Bodmer JL, Schneider P, Tshopp J. The molecular architecture of the TNF superfamily. Trends in Biochemical Sciences. 2002;27(1):19-26.
  19. MacEwan DJ. TNF receptor subtype signalling: differences and cellular consequences. Cellular Signalling. 2002;14(6):477-492.
  20. Haas TL, Emmerich CH, Gerlach B, et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and Is required for TNF-mediated gene induction. Molecular Cell. 2009;36(5):-844. doi: 10.1016/j.molcel.2009.10.013.
  21. Varfolomeev E, Goncharov T, Fedorova AV, et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor α (TNFα)-induced NF-κB activation. Journal of Biological Chemistry. 2008;283(36):24295-24299. doi: 10.1074/jbc.C800128200.
  22. Micheau O, Tshopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114(2):181-190.
  23. Rodríguez M, Cabal-Hierro L, Carcedo MT, et al. NF-κB signal triggering and termination by tumor necrosis factor receptor 2. Journal of Biological Che mistry. 2011;286(26):22814-22824. doi: 10.1074/jbc.M111.225631.
  24. Oregón-Romero E, Vázquez-Del Mercado M, Navarro-Hernández RE, et al. Tumor necrosis factor receptor 2 M196R polymorphism in rheumatoid arthritis and osteoarthritis: relationship with sTNFR2 levels and clinical features. Rheumatology International. 2006;27(1):53-59. doi: 10.1007/s00296-006-0159-7.
  25. Liu CJ, Bosch X. Progranulin: a growth factor, a novel TNFR ligand and a drug target. Pharmacology & Therapeutics. 2012;133(1):124-132. doi: 10.1016/j.pharmthera.2011.10.003.
  26. Jian J, Konopka J, Liu C. Insights into the role of progranulin in immunity, infection, and inflammation. Journal of Leukocyte Biology. 2013;93(2):199-208. doi: 10.1189/jlb.0812429.
  27. Séguin CA, Bernier SM. TNF-alpha suppresses link protein and type II collagen expression in chondrocytes: role of MEK1/2 and NF-kappaB signaling pathways. Journal of Cellular Physiology. 2003;197(3):356-369. doi: 10.1002/jcp.10371.
  28. Ye Z, Chen Y, Zhang R, et al. c-Jun N-terminal kinase — c-Jun pathway transactivates Bim to promote osteoarthritis. Canadian Journal of Physiology and Pharmacology. 2014;92(2):132-139. doi: 10.1139/cjpp-2013-0228.
  29. Honorati MC, Cattini L, Facchini A. VEGF production by osteoarthritic chondrocytes cultured in micromass and mulated by IL-17 and TNF-α. Connective Tissue Research. 2007;48(5):239-245. doi: 10.1080/ 03008200701541767.
  30. Distel E, Cadoudal T, Durant S, et al. The infrapatellar fat pad in knee osteoarthritis: an important source of interleukin-6 and its soluble receptor. Arthritis and Rheumatism. 2009;60(11):3374-3377. doi: 10.1002/art.24881.
  31. Stannus O, Jones G, Cicuttini F, et al. Circulating levels of IL-6 and TNF-α are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults. Osteoarthritis and Cartilage. 2010;18(11):1441-1447. doi: 10.1016/j.joca.2010.08.016.
  32. Rose-John S, Neurath MF. IL-6 trans-signaling: the heat is on. Immunity. 2004;20(1):2-4.
  33. Kamimura D, Isihara K, Hirano T. IL-6 signal transduction and its physiological roles: the signal orchestration model. Reviews of Physiology, Biochemistry and Pharmacology. 2003;149:1-38. doi: 10.1007/s10254-003-0012-2.
  34. Honsawek S, Deepaisarnsakul B, Tanavalee A, et al. Association of the IL-6 -174G/C gene polymorphism with knee osteoarthritis in a Thai population. Genetics and Molecular Research. 2011;10(3):1674-1680.
  35. Porée B, Kypriotou M, Chadjichristos C, et al. Interleukin-6 (IL-6) and/or soluble IL-6 receptor down-regulation of human type II collagen gene expression in articular chondrocytes requires a decrease of Sp1·Sp3 ratio and of the binding activity of both factors to the COL2A1 promoter. Journal of Biological Chemistry. 2008;283(8):4850-4865. doi: 10.1074/jbc.M706387200.
  36. Steeve KT, Marc P, Sandrine T, et al. RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine and Growth Factor Reviews. 2004;15(1):49-60.
  37. Sakao K, Takahashi KA, Arai Y, et al. Osteoblasts derived from osteophytes produce interleukin-6, interleukin-8, and matrix metalloproteinase-13 in osteoarthritis. Journal of Bone and Mineral Metabolism. 2009;27(4):412-423. doi: 10.1007/s00774-009-0058-6.
  38. de Hooge ASK, van de Loo FAJ, Bennink MB. Male IL-6 gene knock out mice developed more advanced osteoarthritis upon aging. Osteoarthritis and Cartilage. 2005;13(1):66-73. doi: 10.1016/j.joca.2004.09.011.
  39. Baslund B,Tvede N, Danneskiold-Samsoe B, et al Targeting interleukin-15 in patients with rheumatoid arthritis: a proof-of-concept study. Arthritis and Rheumatism. 2005;52(9):2686-2692. doi: 10.1002/art.21249.
  40. Scanzello CR, Umoh E, Pessler F, et al. Local cytokine profiles in knee osteoarthritis: elevated synovial fluid interleukin-15 differentiates early from end-stage disease. Osteoarthritis and Cartilage. 2009;17(8):1040-1048. doi: 10.1016/j.joca.2009.02.011.
  41. Sun JM, Sun LZ, Liu J. Serum interleukin-15 levels are associated with severity of pain in patients with knee osteoarthritis. Disease Markers. 2013;35(3):203-206. doi: 10.1155/2013/176278.
  42. Chang SH, Dong C. Signaling of interleukin-17 fa mily cytokines in immunity and inflammation. Cell Signaling. 2011;23(7):1069-1075. doi: 10.1016/j.cellsig.2010.11.022.
  43. Korn T, Bettelli E, Oukka M, et al. IL-17 and Th17 cells. Annual Review of Immunology. 2009;27:485-517. doi: 10.1146/annurev.immunol.021908.132710.
  44. Chen B, Deng Y, Tan Y. Association between severity of knee osteoarthritis and serum and synovial fluid interleukin 17 concentrations. Journal of International Medical Research. 2014;42(1):138-144. doi: 10.1177/0300060513501751.
  45. Benderdour M, Tardif G, Pelletier JP, et al. Interleukin 17 (IL-17) induces collagenase-3 production in human osteoarthritic chondrocytes via AP-1 dependent activation: differential activation of AP-1 members by IL-17 and IL-1β. Journal of Rheumatology. 2002;29(6):1262-1272.
  46. Honorati MC, Bovara M, Cattini L, et al. Contribution of interleukin 17 to human cartilage degradation and synovial inflammation in osteoarthritis. Osteoarthritis and Cartilage. 2002;10(10):799-807.
  47. Han L, Lee HS, Yoon JH, et al. Association of IL-17A and IL-17F single nucleotide polymorphisms with susceptibility to osteoarthritis in a Korean population. Gene. 2014;533(1):119-122. doi: 10.1016/j.gene.2013.09.113.
  48. Möller B, Kukoc-Zivojnov N, Kessler U, et al. Interferon-gamma induces expression of interleukin-18 binding protein in fibroblast-like synoviocytes. Rheumatology. 2003;42(3):442-445.
  49. Denoble AE, Huffman KM, Stabler TV, et al. Uric acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(5):2088-2093. doi: 10.1073/pnas.1012743108.
  50. Hulin-Curtis SL, Bidwell JL, Perry MJ. Evaluation of IL18 and IL18R1 polymorphisms: genetic susceptibility to knee osteoarthritis. International Journal of Immunogenetics. 2012;39(2):106-109. doi: 10.1111/j.1744-313X.2011.01060.x.
  51. Dai SM, Shan ZZ, Nishioka K, et al. Implication of interleukin 18 in production of matrix metalloproteinases in articular chondrocytes in arthritis: direct effect on chondrocytes may not be pivotal. Annals of the Rheumatic Diseases. 2005;64(5):735-742. doi: 10.1136/ard.2004.026088.
  52. John T, Kohl B, Mobasheri A, et al. Interleukin-18 induces apoptosis in human articular chondrocytes. Histology and Histopathology. 2007;22(5):469-482. doi: 10.14670/HH-22.469.
  53. Mueller TD, Zhang JL, Sebald W, et al. Structure, binding, and antagonists in the IL-4/IL-13 receptor system. Biochimica et Biophysica Acta-Molecular Cell Research. 2002;1592(3):237-250.
  54. Bhattacharjee A, Shukla M, Yakubenko VP, et al. IL-4 and IL-13 employ discrete signaling pathways for target gene expression in alternatively activated monocytes/macrophages. Free Radical Biology & Medicine. 2013;54:1-16. doi: 10.1016/j.freeradbiomed.2012.10.553.
  55. Yigit S, Inanir A, Tekcan A, et al. Significant association of interleukin-4 gene intron 3 VNTR polymorphism with susceptibility to knee osteoarthritis. Gene. 2014;537(1):6-9. doi: 10.1016/j.gene.2013.12.060.
  56. Wagner S, Fritz P, Einsele H, et al. Evaluation of synovial cytokine patterns in rheumatoid arthritis and osteo arthritis by quantitative reverse transcription polymerase chain reaction. Rheumatology International. 1997;16(5):191-196.
  57. van Meegeren ME, Roosendaal G, Jansen NW, et al. IL-4 alone and in combination with IL-10 protects against blood-induced cartilage damage. Osteoarthritis and Cartilage. 2012;20(7):764-772. doi: 10.1016/j.joca.2012.04.002.
  58. Yorimitsu M, Nishida K, Shimizu A, et al. Intra-articular injection of interleukin-4 decreases nitric oxide production by chondrocytes and ameliorates subsequent destruction of cartilage in instability-induced osteoarthritis in rat knee joints. Osteoarthritis and Cartilage. 2008;16(7):764-771. doi: 10.1016/ j.joca.2007.11.006.
  59. Donnelly RP, Dickensheets H, Finbloom DS. The interleukin-10 signal transduction pathway and regulation of gene expression in mononuclear phagocyte s. Journal of Interferon and Cytokine Research. 1999;19(6):563-573. doi: 10.1089/107999099313695.
  60. Wang Y, Lou S. Direct protective effect of interleukin-10 on articular chondrocytes in vitro. Chinese Medical Journal. 2001;114(7):723-725.
  61. John T, Müller RD, Oberholzer A, et al. Interleukin-10 modulates pro-apoptotic effects of TNF-α in human arti cular chondrocytes in vitro. Cytokine. 2007;40(3):226-234. doi: 10.1016/j.cyto.2007.10.002.
  62. Lacraz S, Nicod LP, Chicheportiche R, et al. IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes. Journal of Clinical Investigation. 1995;96(5):2304-2310. doi: 10.1172/JCI118286.
  63. Umulis D, O’Connor MB, Blair SS. The extracellular regulation of bone morphogenetic protein signaling. Development. 2009;136(22):3715-3728. doi: 10.1242/dev.031534.
  64. Yeh LA, Augustine AJ, Lee P, et al. Interleukin-4, an inhibitor of cartilage breakdown in bovine articular cartilage explants . Journal of Rheumatology. 1995;22(9):1740-1746.
  65. Crane JL, Cao XJ. Bone marrow mesenchymal stem cells and TGF-beta signaling in bone remodeling. Clin Invest. 2014;124:466-472. doi: 10.1172/JCI70050.

版权所有 © Raymuev K.V., 2018

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

##common.cookie##