Особенности методов профилирования экспрессии длинных некодирующих РНК при опухолях

Обложка
  • Авторы: Бейлерли О.А.1, Гареев И.Ф.1, Измайлов А.2, Липатов О.Н.1
  • Учреждения:
    1. Федеральное государственное бюджетное образовательное учреждение высшего образования «Башкирский государственный медицинский университет» Министерства здравоохранения Российской Федерации
    2. Государственное бюджетное учреждение здравоохранения «Республиканский клинический онкологический диспансер» Министерства здравоохранения Республики Башкортостан
  • Выпуск: Том 12, № 3 (2020)
  • Страницы: 11-20
  • Раздел: Научный обзор
  • URL: https://journals.rcsi.science/vszgmu/article/view/34740
  • DOI: https://doi.org/10.17816/mechnikov34740
  • ID: 34740

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

По мере быстрого прогрессирования технологий высокопроизводительного анализа генома изучение длинных некодирующих РНК (днкРНК) становится популярной темой в биомедицинских исследованиях. Длинные некодирующие РНК представляют собой группу некодирующих РНК длиной более 200 нуклеотидов. Они играют фундаментальную роль в пролиферации и дифференцировке клеток, эпигенетической регуляции, поэтому их изучение позволит лучше понять регулирование генов и откроет новые перспективы для терапии и диагностики многих заболеваний, включая опухоли. Идентификация новых молекулярных маркеров, в том числе циркулирующих днкРНК, расширит возможности обнаружения опухоли, прогнозирования течения заболевания, планирования лечения, а также диагностики при самых ранних признаках надвигающейся неопластической трансформации. Терапия опухолей, особенно злокачественных, также является сложной задачей. Когда хирургия и химиотерапия не дают должного результата, выбором лечения становится лучевая терапия. В этом отношении рассмотрение днкРНК в качестве инновационных терапевтических агентов при опухолях представляет захватывающую идею. Однако возможность их использования в современной клинической практике ограничена, и это связано с рядом проблем. В настоящее время существуют значительные различия между процедурами обработки образцов, методами анализа и особенно стратегиями стандартизации результатов. Другая же проблема исследований по профилированию экспрессии днкРНК заключается в большом числе и разнообразии их функций в опухолях. Именно поэтому решение технологических задач по профилированию экспрессии днкРНК при опухолях будет способствовать использованию днкРНК в современной клинической практике.

Об авторах

Озал Арзуман оглы Бейлерли

Федеральное государственное бюджетное образовательное учреждение высшего образования «Башкирский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Автор, ответственный за переписку.
Email: obeylerli@mail.ru
ORCID iD: 0000-0002-6149-5460

аспирант кафедры урологии с курсом ИДПО

Россия, г. Уфа, Республика Башкортостан

Ильгиз Фанилевич Гареев

Федеральное государственное бюджетное образовательное учреждение высшего образования «Башкирский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Email: ilgiz_gareev@mail.ru
ORCID iD: 0000-0002-4965-0835

научный сотрудник Центральной научно-исследовательской лаборатории

Россия, г. Уфа, Республика Башкортостан

Адель Измайлов

Государственное бюджетное учреждение здравоохранения «Республиканский клинический онкологический диспансер» Министерства здравоохранения Республики Башкортостан

Email: izmailov75@mail.ru

Главный врач

Россия, Уфа, Республика Башкортостан

Олег Н. Липатов

Федеральное государственное бюджетное образовательное учреждение высшего образования «Башкирский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Email: lipatovoleg@bk.ru

профессор кафедры Онкологии с курсами онкологии и патологической анатомии ИДПО

Россия, Уфа, Республика Башкортостан

Список литературы

  1. Stearns SC. Frontiers in molecular evolutionary medicine. J Mol Evol. 2020;88(1):3-11. https://doi.org/10.1007/s00239-019-09893-5.
  2. Wang J, Zhang X, Chen W, et al. Regulatory roles of long noncoding RNAs implicated in cancer hallmarks. Int J Cancer. 2019;146(4):906-916. https://doi.org/10.1002/ijc.32277.
  3. Li J, Liu C. Coding or noncoding, the converging concepts of RNAs. Front Genet. 2019;10:496. https://doi.org/ 10.3389/fgene.2019.00496.
  4. Huang X, Zhang W, Shao Z. Association between long non-coding RNA polymorphisms and cancer risk: A meta-analysis. Biosci Rep. 2018;38(4):BSR20180365. https://doi.org/10.1042/BSR20180365.
  5. Zhang X, Hong R, Chen W. The role of long noncoding RNA in major human disease. Bioorg Chem. 2019;92:103214. https://doi.org/10.1016/j.bioorg.2019.103214.
  6. Li J, Bian EB, He XJ, et al. Epigenetic repression of long non-coding RNA MEG3 mediated by DNMT1 represses the p53 pathway in gliomas. Int J Oncol. 2016;48(2):723-733. https://doi.org/10.3892/ijo.2015.3285.
  7. Zhang H, Liao Z, Liu F, et al. Long noncoding RNA HULC promotes hepatocellular carcinoma progression. Aging (Albany NY). 2019;11(20):9111-9127. https://doi.org/ 10.18632/aging.102378.
  8. Zhang X, Gong J, Lu J, et al. Long noncoding RNA LINC00337 accelerates the non-small-cell lung cancer progression through inhibiting TIMP2 by recruiting DNMT1. Am J Transl Res. 2019;11(9):6075-6083.
  9. Hu X, Li Q, Zhang J. The Long Noncoding RNA LINC00908 facilitates hepatocellular carcinoma progression via interaction with Sox-4. Cancer Manag Res. 2019;11:8789-8797. https://doi.org/10.2147/CMAR.S216774.
  10. Liu C, Zhang H, Liu H. Long noncoding RNA UCA1 accelerates nasopharyngeal carcinoma cell progression by modulating miR-124-3p/ITGB1 axis. Onco Targets Ther. 2019;12:8455-8466. https://doi.org/10.2147/OTT.S215819.
  11. Lin H, Zhao Z, Hao Y, et al. Long noncoding RNA HIF1A-AS2 facilitates cell survival and migration by sponging miR-33b-5p to modulate SIRT6 expression in osteosarcoma. Biochem Cell Biol. 2019;98(2):284-292. https://doi.org/10.1139/bcb-2019-0171.
  12. Wang J, Xi C, Yang X, et al. LncRNA WT1-AS inhibits triple-negative breast cancer cell migration and invasion by downregulating transforming growth Factor β1. Cancer Biother Radiopharm. 2019;34(10):671-675. https://doi.org/ 10.1089/cbr.2019.2925.
  13. Sarfi M, Abbastabar M, Khalili E. Long noncoding RNAs biomarker-based cancer assessment. J Cell Physiol. 2019;234(10):16971-16986. https://doi.org/10.1002/jcp. 28417.
  14. Mohammadi S, Yousefi F, Shabaninejad Z, et al. Exosomes and cancer: From oncogenic roles to therapeutic applications. IUBMB Life. 2019; 72(4):724-748. https://doi.org/ 10.1002/iub.2182.
  15. Merola R, Tomao L, Antenucci A, et al. PCA3 in prostate cancer and tumor aggressiveness detection on 407 high-risk patients: A National Cancer Institute experience. J Exp Clin Cancer Res. 2015;34(1):15. https://doi.org/10.1186/s13046-015-0127-8.
  16. Ren S, Wang F, Shen J, et al. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur J Cancer. 2013;49(13):2949-2959. https://doi.org/10.1016/j.ejca.2013.04.026.
  17. Tang X, Liu S, Liu Y, et al. Circulating serum exosomal aHIF is a novel prognostic predictor for epithelial ovarian cancer. Onco Targets Ther. 2019;12:7699-7711. https://doi.org/10.2147/OTT.S220533.
  18. Liu Y, Feng W, Liu W, et al. Circulating lncRNA ABHD11-AS1 serves as a biomarker for early pancreatic cancer diagnosis. J Cancer. 2019;10(16):3746-3756. https://doi.org/10.7150/jca.32052.
  19. Abedini P, Fattahi A, Agah S, et al. Expression analysis of circulating plasma long noncoding RNAs in colorectal cancer: The relevance of lncRNAs ATB and CCAT1 as potential clinical hallmarks. J Cell Physiol. 2019;234(12):22028-22033. https://doi.org/10.1002/jcp.28765.
  20. Teng Y, Kang H, Chu Y. Identification of an exosomal long noncoding RNA SOX2-OT in plasma as a promising biomarker for lung squamous cell carcinoma. Genet Test Mol Biomarkers. 2019;23(4):235-240. https://doi.org/10.1089/gtmb.2018.0103.
  21. Yarmishyn AA, Kurochkin IV. Long noncoding RNAs: A potential novel class of cancer biomarkers. Front Genet. 2015;6:145. https://doi.org/10.3389/fgene.2015.00145.
  22. Viereck J, Thum T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and Injury. Circ Res. 2017;120(2):381-399. https://doi.org/10.1161/CIRCRESAHA.116.308434.
  23. Chatterjee M, Sengupta S. Emerging roles of long non-coding RNAs in cancer. J Biosci. 2019;44(1):22.
  24. Eissa S, Matboli M, Essawy NO, et al. Rapid detection of urinary long non-coding RNA urothelial carcinoma associated one using a PCR-free nanoparticle-based assay. Biomarkers. 2015; 20(3):212-217. https://doi.org/10.3109/ 1354750X.2015.1062918.
  25. Zhang H, Zhao L, Wang YX, et al. Long non-coding RNA HOTTIP is correlated with progression and prognosis in tongue squamous cell carcinoma. Tumour Biol. 2015;36(11):8805-8009. https://doi.org/10.1007/s13277-015-3645-2.
  26. Tang H, Wu Z, Zhang J, Su B. Salivary lncRNA as a potential marker for oral squamous cell carcinoma diagnosis. Mol Med Rep. 2013;7(3):761-766. https://doi.org/10.3892/mmr.2012.1254.
  27. Zhang WB, Peng X. Cervical metastases of oral maxillary squamous cell carcinoma: A systematic review and meta-analysis. Head Neck. 2016;38 Suppl 1:E2335-2342. https://doi.org/10.1002/hed.24274.
  28. Dhamija S, Diederichs S. From junk to master regulators of invasion: lncRNA functions in migration, EMT and metastasis. Int J Cancer. 2016;139(2):269-280. https://doi.org/10.1002/ijc.30039.
  29. Zidan HE, Karam RA, El-Seifi OS, Elrahman TM. Circulating long non-coding RNA MALAT1 expression as molecular biomarker in Egyptian patients with breast cancer. Cancer Genet. 2018;220:32-37. https://doi.org/10.1016/ j.cancergen.2017.11.005.
  30. Siddique H, Al-Ghafari A, Choudhry H, et al. Long noncoding RNAs as prognostic markers for colorectal cancer in Saudi patients. Genet Test Mol Biomarkers. 2019;23(8):509-514. https://doi.org/10.1089/gtmb.2018.0308.
  31. Zhou Q, Tang X, Tian X, et al. LncRNA MALAT1 negatively regulates MDSCs in patients with lung cancer. J Cancer. 2018;9(14):2436-2442. https://doi.org/10.7150/jca.24796.
  32. Previdi MC, Carotenuto P, Zito D, et al. Noncoding RNAs as novel biomarkers in pancreatic cancer: What do we know? Future Oncol. 2017;13(5):443-453. https://doi.org/ 10.2217/fon-2016-0253.
  33. Bolha L, Ravnik-Glavac M, Glavac D. Long noncoding RNAs as biomarkers in cancer. Dis Markers. 2017;2017:7243968. https://doi.org/10.1155/2017/7243968.
  34. Kraus TF, Greiner A, Guibourt V, et al. Long non-coding RNA normalisers in human brain tissue. J Neural Transm (Vienna). 2015;122(7):1045-1054. https://doi.org/10.1007/s00702-014-1352-6.
  35. Du Z, Fei T, Verhaak RG, et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol. 2013;20(7):908-913. https://doi.org/10.1038/nsmb.2591.
  36. Clark MB, Johnston RL, Inostroza-Ponta M, et al. Genome — wide analysis of long noncoding RNA stability. Genome Res. 2012;22(5):885-898. https://doi.org/10.1101/gr.131037.111.
  37. Zhou X, Yin C, Dang Y, et al. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Rep. 2015;5:11516. https://doi.org/10.1038/srep11516.
  38. Kokkat TJ, Patel MS, McGarvey D, et al. Archived formalin-fixed paraffin-embedded (FFPE) blocks: A valuable underexploited resource for extraction of DNA, RNA, and protein. Biopreserv Biobank. 2013;11(2):101-106. https://doi.org/10.1089/bio.2012.0052.
  39. Dong L, Yoshizawa J, Li X. Nucleic acid isolation and quality control. Methods Mol Biol. 2019;1897:325-343. https://doi.org/10.1007/978-1-4939-8935-5_28.
  40. Qi P, Zhou XY, Du X. Circulating long non-coding RNAs in cancer: Current status and future perspectives. Mol Cancer. 2016;15(1):39. https://doi.org/10.1186/s12943-016-0524-4.
  41. Qin J, Williams TL, Fernando MR. A novel blood collection device stabilizes cell-free RNA in blood during sample shipping and storage. BMC Res Notes. 2013;6:380. https://doi.org/10.1186/1756-0500-6-380.
  42. Bell E, Watson HL, Bailey S, et al. A robust protocol to quantify circulating cancer biomarker MicroRNAs. Methods Mol Biol. 2017;1580:265-279. https://doi.org/ 10.1007/978-1-4939-6866-4_18.
  43. Iempridee T, Wiwithaphon S, Piboonprai K, et al. Identification of reference genes for circulating long noncoding RNA analysis in serum of cervical cancer patients. FEBS Open Bio. 2018;8(11):1844-1854. https://doi.org/ 10.1002/2211-5463.12523.
  44. Wang X, Zhang X, Yuan J, et al. Evaluation of the performance of serum miRNAs as normalizers in microRNA studies focused on cardiovascular disease. J Thorac Dis. 2018;10(5):2599-2607. https://doi.org/10.21037/jtd.2018.04.128.
  45. Fang Z, Zhang S, Wang Y, et al. Long non-coding RNA MALAT-1 modulates metastatic potential of tongue squamous cell carcinomas partially through the regulation of small proline rich proteins. BMC Cancer. 2016;16(1):706. https://doi.org/10.1186/s12885-016-2735-x.
  46. Shi T, Gao G, Cao Y. Long noncoding RNAs as novel biomarkers have a promising future in cancer diagnostics. Dis Markers. 2016;2016:9085195. https://doi.org/10.1155/ 2016/9085195.
  47. Kunz M, Wolf B, Fuchs M, et al. A comprehensive method protocol for annotation and integrated functional understanding of lncRNAs. Brief Bioinform. 2019;21(4):1391-1396. https://doi.org/10.1093/bib/bbz066.
  48. Tian X, Zhu X, Yan T, et al. Differentially expressed lncRNAs in gastric cancer patients: A potential biomarker for gastric cancer prognosis. J Cancer. 2017;8(13):2575-2586. https://doi.org/10.7150/jca.19980.
  49. Chillon I, Marcia M, Legiewicz M, et al. Native purification and analysis of long RNAs. Methods Enzymol. 2015;558:3-37. https://doi.org/10.1016/bs.mie.2015.01.008.
  50. Lekchnov EA, Zaporozhchenko IA, Morozkin ES, et al. Protocol for miRNA isolation from biofluids. Anal Biochem. 2016;499:78-84. https://doi.org/10.1016/j.ab.2016.01.025.
  51. Gao L, Jiang F. MicroRNA (miRNA) Profiling. Methods Mol Biol. 2016;1381:151-161. https://doi.org/10.1007/978-1-4939-3204-7_8.
  52. Lekchnov EA, Zaporozhchenko IA, Morozkin ES, et al. Protocol for miRNA isolation from biofluids. Anal Biochem. 2016;499:78-84. https://doi.org/10.1016/j.ab. 2016.01.025.
  53. Hu Y, Lan W, Miller D. Next-generation sequencing for MicroRNA expression profile. Methods Mol Biol. 2017;1617: 169-177. https://doi.org/10.1007/978-1-4939-7046-9_12.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Бейлерли О.А., Гареев И.Ф., Измайлов А., Липатов О.Н., 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах