Digital monitoring and predictive diagnostics technologies as a tool for rolling stock lifecycle management

Cover Page

Cite item

Full Text

Abstract

Aim: to evaluate the impact of digital monitoring and predictive diagnostics technologies on the management of railway rolling stock life cycles.

Materials and Methods: the study is based on a comparative analysis and systematization of international and Russian standards, industry regulations, and scientific publications on asset life cycle management, as well as the implementation of digital projects in the field of monitoring and predictive diagnostics technologies in railway transport.

Results: the article systematizes methodological approaches to asset lifecycle management and assesses the state of the railway industry's regulatory framework in this area, specifics of using a predictive approach in managing the lifecycle of rolling stock as well. The paper clarifies the impact of digital monitoring technologies and predictive analytics on lifecycle management and identifies key drivers of effects. The paper also highlights the benefits of creating a trusted information exchange environment for various stakeholders involved in the lifecycle of freight cars.

Conclusion: the research findings will enable an assessment of how monitoring technologies and predictive analytics impact railway rolling stock lifecycle management. These results will prove valuable for planning and implementing digital transformation projects in this field, as well as for conducting further scientific research and developing industry-specific regulatory documentation.

About the authors

A. E. Fedorov

Industry Center for Development and Information Systems; Emperor Alexander I St. Petersburg State Transport University

Author for correspondence.
Email: alexfedor@yandex.ru
ORCID iD: 0009-0004-6319-5172

postgraduate student, head of department LLC “OCRV”

Russian Federation, Moscow; St. Petersburg

References

  1. Zhuravleva NA. Problems of introduction of digital technologies in transport. Transport Rossijskoj Federacii. 2019;3(82):19–22. (In Russ). EDN: JKHHBW
  2. Volkova EM, Lyakina MA, Strimovskaya AV. Problems of economic effects assessment from digital technologies applying in urban transport systems. Bulletin of scientific research results. 2019;(1):59–68. (In Russ). doi: 10.20295/2223-9987-2019-1-59-68 EDN: ZAJPBZ
  3. Tretyak VP, Lyakina MA. Digital platform – quasi-integrated systems product. PACIFIC RIM: Economics, Politics, Law. 2020;(1):61–73. (In Russ). doi: 10.24866/1813-3274/2020-1/61-73 EDN: UVTRVM
  4. Gulyi IM. Digital solutions in the railway rolling stock production sector. Transport business of Russi. 2020;(5):38–41. (In Russ). EDN: TJHDYY
  5. Gulyi I.M., Internet of things (iot) technologies in the transport sector and their economic consequences. Scientific Journal Economic Sciences. 2020;(193):216–219. (In Russ). doi: 10.14451/1.193.216 EDN: YDQMHM
  6. Adadurov AS, Semenova AS. Intellectual systems of decision-making support and predictive diagnostics by stationary means of rolling stock diagnostics on the train running course. II International Conference "Science 1520 VNIIZHT": Look beyond the horizon": Collection of conference materials. 2023;13–17. (In Russ). EDN: ZHARYR
  7. Panov S, Nikolov A, Panova S. Review of standards and systems for predictive maintenance. Science, Engineering and Education. 2021;6(1):65–73. (In Russ). doi: 10.59957/see.v6.i1.2020.1 EDN: QSDQWQ
  8. GOST R 56136-2014. Life cycle management of military products. Terms and definitions. Available from: http://gost.gtsever.ru/Data/587/58768.pdf/ Accessed: Apr 20, 2025. (In Russ).
  9. CALS Continuous Acquisition and Lifecycle Support. Available from: https://www.tadviser.ru/a/53201/ Accessed: Apr 20, 2025. (In Russ).
  10. ISO 55000:2014 Asset management - Overview, principles and terminology. [Internet]. Available from: http://gost.gtsever.ru/Data/588/58869.pdf / Accessed: Apr 20, 2025. (In Russ).
  11. GOST 31539-2012 Life cycle of railway rolling stock. Terms and definitions. Available from: https://protect.gost.ru/document.aspx?control=7&id=181157/ Accessed: Apr 20, 2025. (In Russ.)
  12. Zamyshlyaev AM, Shubinskiy IB, Bublikova MA. URRAN – a system for managing technical assets in railway transport. Proceedings of JSC NIIAS: Collection of articles. 2021;1(11):67-82. (In Russ.) EDN: NPFUUE
  13. The strategy of digital transformation of Russian Railways until 2025 (CDT-2025). Accessed: Apr 20, 2025. (In Russ.) Available from: https://www.tadviser.ru/a/307861/
  14. Platform of linear infrastructure operators. [Internet]. Accessed: 2025 April 20. (In Russ.) Available from: https://rzddigital.ru/platforms/platforma-operatorov-lineynoy-infrastruktury/
  15. Sapetov MV. Wagon complex: current issues, prospects for the future. Eurasia News. 2022; XII. (In Russ). Accessed: Apr 20, 2025. Available from: http://eav.ru/publ1.php?publid=2022-12a07/

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Functional scheme of digital technology for monitoring and predictive analysis of freight cars assemblies (Source: author’s researching)

Download (105KB)
3. Fig 2. Stakeholder interest map for lifecycle participants

Download (142KB)

Copyright (c) 2025 Fedorov А.Е.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

link to the archive of the previous title

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».