Search for new therapeutic targets in asthma. Review.

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A review of recent publications devoted to the study of risk factors for the onset of the disease, mechanisms, diagnosis and treatment of asthma from the point of view of molecular allergology is presented. New concepts and problems in the implementation of the exposome paradigm and its practical application are considered, including genetic and epigenetic factors, environmental impact. The most relevant experimental studies are noted that contribute to further understanding of molecular and immune mechanisms with potential new targets for the development of therapeutic agents. Reliable diagnosis of asthma, endotyping of the disease and monitoring of its severity are of great importance in the treatment of asthma. The heterogeneity of asthma is due to individual genetic and epigenetic variability, exposure to individual environmental factors (depending on regional characteristics, changing climatic conditions and population distribution), which explains the occurrence of asthma is not associated only with allergies. The modern assessment and treatment of comorbid/multimorbid asthma is described, including interaction with asthma phenotypes, which is important for the formation of a new therapeutic personalized approach to precision medicine and testing of prognostic biomarkers. The results of clinical trials, multicenter international studies on the use of new approaches in the diagnosis of asthma (candidate biomarkers) based on molecular allergology and treatment in adults and children using biological preparations are given.

作者简介

Zoia Nesterenko

St. Petersburg State Pediatric Medical University

编辑信件的主要联系方式.
Email: zvnesterenko@gmail.com
ORCID iD: 0000-0001-9522-897X

MD, PhD, Dr. Sci. (Med.), Professor, Department of Propediatrics Сhildhood Diseases with a Course for Patients General Care

俄罗斯联邦, Saint Petersburg

Olga Lagno

St. Petersburg State Pediatric Medical University

Email: olga1526@yandex.ru

MD, PhD, Assistant Professor, Department of Propediatrics Сhildhood Diseases with a Course for Patients General Care

俄罗斯联邦, Saint Petersburg

Evgenii Pankov

St. Petersburg State Pediatric Medical University

Email: avas7@mail.ru

MD, PhD, Assistant Professor, Department of Faculty Pediatrics

俄罗斯联邦, Saint Petersburg

参考

  1. spulmo.ru [Internet]. Bronkhial’naya astma. Klinicheskie rekomendatsii RF. 2021. Available at: https://spulmo.ru/upload/kr/BA_2021.pdf (In Russ.)
  2. Kosenkova TV, Movikova VP. Bronchial asthma and obesity in children. Mechanisms of interrelation. Medicine: theory and practice. 2019;4(1):62–83. (In Russ.)
  3. Kostinov MP, Bulgakova VA, Abaeva ZR, et al. Immunokorrektsiya v pediatrii. Moscow: Meditsina dlya vsekh, 2001. (In Russ.)
  4. Nesterenko ZV, Bulatova EM, Lagno OV. Development of a new conceptual platform in asthmology. EAACI 2018. Pediatrician (St. Petersburg). 2019;10(4): 103–110. (In Russ.) doi: 10.17816/PED104103-110
  5. Nesterenko ZV, Moiseenkova YuA, Ashchepkova OM, et al. Experience of using a biopreparat in the treatment of atopic disease with dermatorespiratory syndrome. Medicine: theory and practice. 2022;7(2):38–44. (In Russ.) doi: 10.56871/7775.2022.44.54.005
  6. Surovenko TN, Glushkova ЕF. New possibilities for asthma therapy in children. Medical Council. 2018;(17):192–199. (In Russ.) doi: 10.21518/2079-701X-2018-17-192-198
  7. Titova ON, Kulikov VD. Bronchial asthma incidence and mortality dynamics in adult population of the North-Western federal district. Medical Alliance. 2021;9(3):31–39. (In Russ.) doi: 10.36422/23076348-2021-9-3-31-39
  8. Titova ON, Kulikov VD. Morbidity and mortality from respiratory diseases adult population of St. Petersburg. Medical Alliance. 2019;7(3):42–48. (In Russ.) doi: 10.36422/2307-6348-2019-7-3-42-48
  9. Agache I, Akdis CA, Akdis M, et al. EAACI biologicals guidelines-recommendations for severe asthma. Allergy. 2020;76(1):1–31. doi: 10.1111/all.14425
  10. Agache I, Eguiluz-Gracia I, Cojanu C, et al. Advances and highlights in asthma in 2021. Allergy. 2021;76(11):3390–3407. doi: 10.1111/all.15054
  11. Akdis CA, Arkwright PD, Brüggen M-C, et al. Type 2 immunity in the skin and lungs. Allergy. 2020;75(7):1582–1605. doi: 10.1111/all.14318
  12. Bahri R, Custovic A, Korosec P, et al. Mast cell activation test in the diagnosis of allergic disease and anaphylaxis. J Allergy Clin Immunol. 2018;142(2):485–496.e6. doi: 10.1016/j.jaci.2018.01.043
  13. Busse WW, Holgate S, Kerwin E, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med. 2013;188(11):1294–1302. doi: 10.1164/rccm.201212-2318OC
  14. Cevhertas L, Ogulur I, Maurer DJ, et al. Advances and recent developments in asthma in 2020. Allergy. 2020;75(12):3124–3146. doi: 10.1111/all.14607
  15. Cosmi L, Liotta F, Maggi E, et al. Th17 cells: New players in asthma pathogenesis. Allergy. 2011;66(8): 989–998. doi: 10.1111/j.1398-9995.2011.02576.x
  16. De Lucía Finkel P, Xia W, Jefferies WA. Beyond Unconventional: What Do We Really Know about Group 2 Innate Lymphoid Cells? J Immunol. 2021;206(7): 1409–1417. doi: 10.4049/jimmunol.2000812
  17. Dhar S, Larché M. PVX108 peptide immunotherapy significantly reduces markers of peanut-induced anaphylaxis in a dose-dependent manner. J Allergy Clin Immunol. 2019;143(2): AB426. doi: 10.1016/j.jaci.2018.12.959
  18. Flores Kim J, McCleary N, Nwaru BI, et al. Diagnostic accuracy, risk assessment, and cost-effectiveness of component-resolved diagnostics for food allergy: a systematic review. Allergy. 2018;73(8):1609–1621. doi: 10.1111/all.13399
  19. Fоkkens WJ, Lund V, Bachert C, et al. EUFOREA consensus on biologics for CRSwNP with or without asthma. Allergy. 2019;74(12):2312–2319. doi: 10.1111/all.13875
  20. Gomes-Belo J, Hannachi F, Swan K, Santos AF. Advances in food allergy diagnosis. Curr Pediatr Rev. 2018;14(3):139–149. doi: 10.2174/1573396314666180423105842
  21. Jappe U, Breiteneder H. Peanut Allergy-Individual molecules as a key to precision medicine. Allergy. 2019;74(2):216–219. doi: 10.1111/all.13625
  22. Hayashi K, Jutabha P, Endou H, et al. LAT1 is a critical transporter of essential amino acids for immune reactions in activated human T cells. J Immunol. 2013;191(8): 4080–4085. doi: 10.4049/jimmunol.1300923
  23. Han X, Krempski JW, Nadeau K. Advances and novel developments in mechanisms of allergic inflammation. Allergy. 2020;75(12):3100–3111. doi: 10.1111/all.14632
  24. Henderson I, Caiazzo E, McSharry C, et al. Why do some asthma patients respond poorly to glucocorticoid therapy? Pharmacol Res. 2020;160:105189. doi: 10.1016/j.phrs.2020.105189
  25. Hong H, Liao S, Chen F, et al. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy. 2020;75(11): 2794–2804. doi: 10.1111/all.14526
  26. Howard TD, Koppelman GH, Xu J, et al. Gene-gene-interaction in asthma: IL4RAandIL13 in a Dutch population with asthma. Am J Hum Genet. 2002;70(1): 230–236. doi: 10.1086/338242
  27. Hussain M, Borcard L, Walsh KP, et al. Basophil-derived IL-4 promotes epicutaneous antigen sensitization concomitant with the development of food allergy. J Allergy Clin Immunol. 2018;141(1):223–234.e5. doi: 10.1016/j.jaci.2017.02.035
  28. Kabata H, Moro K, Fukunaga K, et al. Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation. Nat Commun. 2013;4:2675. doi: 10.1038/ncomms3675
  29. Kaminuma O, Nishimura T, Saeki M, et al. L-type amino acid transporter 1 (LAT1)-specific inhibitor is effective against T cell-mediated nasal hyperresponsiveness. Allergol Int. 2020;69(3):455–458. doi: 10.1016/j.alit.2019.12.006
  30. Khodoun MV, Tomar S, Tocker JE, et al. Prevention of food allergy development and suppression of established food allergy by neutralization of thymic stromal lymphopoietin, IL-25, and IL-33. J Allergy Clin Immunol. 2018;141(1):171–179. doi: 10.1016/j.jaci.2017.02.046
  31. Kono M, Akiyama M, Inoue Y, et al. Filaggrin gene mutations may influence the persistence of food allergies in Japanese primary school children. Br J Dermatol. 2018;179(1):190–191. doi: 10.1111/bjd.16375
  32. Long A, Bunning B, Borro M, et al. The future of omics for clinical practice. Ann Allergy Asthma Immunol. 2019;123(6):535–536. doi: 10.1016/j.anai.2019.07.016
  33. Molet S, Hamid Q, Davoine F, et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol. 2001;108(3):430–438. doi: 10.1067/mai.2001.117929
  34. Nabe T. Steroid-Resistant Asthma and Neutrophils. Biol Pharm Bull. 2020;43(1):31–35. doi: 10.1248/bpb. b19-00095
  35. Papadopoulos NG, Barnes P, Canonica GW, et al. The evolving algorithm of biological selection in severe asthma. Allergy. 2020;75(7):1555–1563. doi: 10.1111/all.14256
  36. Pfaar O, Agache I, de Blay F, et al. Perspectives in allergen immunotherapy: 2019 and beyond. Allergy. 2019;74(S108):3–25. doi: 10.1111/all.14077
  37. Pusceddu I, Dieplinger B, Mueller T. ST2 and the ST2/IL-33 signalling pathway-biochemistry and pathophysiology in animal models and humans. Clin Chim Acta. 2019;495:493–500. doi: 10.1016/j.cca.2019.05.023
  38. Su M-W, Lin W-C, Tsai C-H, et al. Childhood asthma clusters reveal neutrophil-predominant phenotype with distinct gene expression. Allergy. 2018;73(10): 2024–2032. doi: 10.1111/all.13439
  39. Suaini NHA, Wang Y, Soriano VX, et al. Genetic determinants of paediatric food allergy: a systematic review. Allergy. 2019;74(9):1631–1648. doi: 10.1111/all.13767

版权所有 © Nesterenko Z.V., Lagno O.V., Pankov E.A., 2022

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


##common.cookie##