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АННОТАЦИЯ
Смертность от инфаркта миокарда и его осложнений  — нарушений сердечного ритма, ремоделирования миокарда 
с последующим развитием застойной сердечной недостаточности — занимает лидирующее место в мире. В качестве 
одного из способов предотвращения ремоделирования сердца активно изучают активацию эпикарда. Метод осно-
ван на способности клеток эмбрионального эпикарда к эпителиально-мезенхимальной трасформации, в результате 
которой образованные клетки-производные эпикарда дают начало различным цитологическим линиям  — сердеч-
ным фибробластам, гладкомышечным клеткам сосудистой стенки, адипоцитам и кардиомиоцитам. В постнатальном 
периоде этот регенераторный потенциал отсутствует. В настоящее время разработаны различные методики актива-
ции репаративного потенциала эпикарда с использованием вариантов генетического перепрограммирования клеток 
эпикарда с помощью вирусных векторов, воздействием паракринных факторов, участвующих в формировании сердца 
и его структур — факторами транскрипции GATA4, GATA6, тимозином β4, введением эмбриональных стволовых клеток 
или индуцированных плюрипотентных стволовых клеток в составе тканеинженерных конструкций, активацией фак-
торов роста фибробластов (FGF), и тромбоцитарного фактора роста (PDGF). Эти методы активно изучаются на экспе-
риментальных моделях инфаркта миокарда и показали свою высокую эффективность in vitro. Результаты трансплан-
тации тканеинженерных конструкций во время проведения аортокоронарного шунтирования пациентам с тяжелой 
постинфарктной сердечной недостаточностью показывают перспективность в плане замедления ремоделирования 
миокарда.

Ключевые слова: эпикард; регенерация; репарация; инфаркт миокарда; лечение; сердечная недостаточность; фактор 
роста.
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Stimulation of the epicardium as a source 
of myocardial repair: from experiment 
to clinical practice
Eugene V. Timofeev, Yana E. Bulavko
Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russia

ABSTRACT
Mortality from myocardial infarction and its complications — heart rhythm disturbances, myocardial remodeling with subse-
quent development of congestive heart failure — occupies a leading place in the world. Activation of the epicardium is being 
actively studied as one of the ways to prevent cardiac remodeling. The method is based on the ability of embryonic epicardial 
cells to undergo epithelial-mesenchymal transformation, as a result of which the resulting epicardial-derived cells give rise 
to various cytological lines — cardiac fibroblasts, smooth muscle cells of the vascular wall, adipocytes and cardiomyocytes. 
In the postnatal period, this regenerative potential is absent. Currently, various methods have been developed to activate 
the reparative potential of the epicardium using options for genetic reprogramming of epicardial cells using viral vectors, 
exposure to paracrine factors involved in the formation of the heart and its structures — transcription factors GATA4, GATA6, 
thymosin-β4, introduction of embryonic stem cells or induced pluripotent stem cells in tissue-engineered constructs, activa-
tion of fibroblast growth factors (FGF), and platelet-derived growth factor (PDGF). These methods are being actively studied 
in experimental models of myocardial infarction and have shown their high efficiency in vitro. The results of transplantation of 
tissue-engineered structures during coronary artery bypass surgery in patients with severe post-infarction heart failure show 
promise in terms of slowing down myocardial remodeling.
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ВВЕДЕНИЕ
Сердце и  устья крупных сосудов окружены двуслой-

ным серозным мешком  — перикардом: наружный слой 
образован соединительной тканью и  прикрепляется 
к диафрагме, плевре и грудине, внутренний слой образует 
два листка: висцеральный (эпикард) и париетальный [31]. 
Иннервация перикарда осуществляется за счет ветвей 
диафрагмального и  блуждающего нервов, а  также сим-
патическими ответвлениями сердечных сплетений. Кро-
воснабжение боковых и  передних отделов перикарда 
происходит из бассейна внутренней грудной артерии, 
а  питание задней поверхности перикарда обеспечивают 
перикардиальные ветви, отходящие непосредственно от 
грудного отдела аорты.

Эпикард представляет собой тонкий слой эпители-
альных клеток (эпителий целомического типа), который 
играет ключевую роль в  развитии сердца позвоночных 
животных. В  процессе эмбриогенеза эпикард продуци-
рует большое количество прогениторных клеток эпикар-
да  (ПКЭ), которые подвергаются эпителиально-мезенхи-
мальной трансформации (ЭМТ) [34]. Предполагают, что 
именно этот процесс является основополагающим для 
полноценного формирования сердца: подвергшиеся ЭМТ 
клетки мигрируют в  толщу миокарда. Эти клетки дают 
начало различным типам клеток, включая гладкомышеч-
ные клетки сосудистой стенки, сердечные фибробласты, 
адипоциты и,  возможно, эндотелиальные клетки и  суб-
популяцию кардиомиоцитов [25]. Кроме того, эпикард 
участвует в синтезе паракринных факторов, которые обе-
спечивают рост коронарных сосудов, а также дифферен-
цировку и развитие миокарда [20, 42].

В постнатальном периоде эпикард стабилизирует-
ся, не проявляя пролиферативных и  промиграционных 
свойств. Однако в ответ на повреждение эпикардиальные 
клетки реактивируются по типу эмбриональных, вклю-
чая экспрессию генов Wt1 и  генетические маркеры ЭМТ 
(Tbx18 или Snai1) [30, 36, 38, 48]. Пик активности данных 
генов приходится на 3–5-е сутки после воспроизведен-
ного инфаркта миокарда и  сохраняется до 7 дней [23], 
по некоторым данным, вплоть до 14 дней, охватывая 
до 75 % эпикардиальных клеток, а  затем постепенно 
снижается [36, 48]. Клетки подвергаются ЭМТ и  мигри-
руют в  субэпикардиальное пространство для участия 
в репарации ткани [9, 19]. Даже зрелое сердце способно 
к восстановлению миокарда после повреждения, но этот 
потенциал крайне мал и  прогрессивно снижается после 
рождения [8].

Известно, что для миокарда характерна неполная ре-
парация, имеющая смешанный тип регенерации: внутри-
клеточный  — за счет внутриклеточных структур (гипер-
трофия) и  клеточный  — за счет соединительной ткани. 
После создания ишемических событий возможности 
дифференцировки ПКЭ в  другие типы клеток были до-
казаны для фибробластов и  сердечных адипоцитов [45]. 

В  последующих работах, выполненных на трансгенных 
мышах, было установлено, что кардиомиоциты также 
могут происходить из клеток эпикарда [7, 11, 47].

Наряду с  активацией эмбриональной генетической 
программы и  миграцией ПКЭ в  субэпикардиальное про-
странство для восполнения клеточного пула, прогенитор-
ные клетки эпикарда синтезируют паракринные факторы, 
которые влияют на формирование ткани, рост и развитие 
коронарных артерий. В  основном это осуществляется за 
счет факторов роста фибробластов (FGF), тромбоцитар-
ного фактора роста (Platelet-Derived Growth Factor, PDGF), 
моноцитарного хемоаттрактантного белка  1 (Monocyte 
Chemoattractant Protein 1, MCP‑1), фактора роста эндо-
телия сосудов (Vascular Endothelial Growth Factors, VEGF), 
фоллистатин-подобного белка‑1 (Follistatin Like 1, FSTL1) 
[41, 48]. Под действием комплекса этих факторов повы-
шается пролиферативная активность клеток, улучшается 
систолическая функция миокарда и  усиливается васку-
ляризация за счет повышения плотности (количества) 
капилляров в пораженной области [41].

В настоящий момент эндогенная способность взрос-
лых ПКЭ к самостоятельной дифференцировке в кардио-
миоциты и эндотелиоциты не представляется возможной 
для эффективного восполнения пула этих клеток в ответ 
на повреждающий фактор. Тем не менее описана способ-
ность прогениторных клеток трансформироваться в глад-
комышечные клетки, перициты, фибробласты и адипоци-
ты. Важная роль также отдается паракринным факторам, 
которые создают специфическое микроокружение для 
регенерации ткани сердца.

ТЕРАПЕВТИЧЕСКИЕ ВОЗМОЖНОСТИ 
ИСПОЛЬЗОВАНИЯ ЭПИКАРДА 
В КАЧЕСТВЕ ИСТОЧНИКА РЕПАРАЦИИ

Основная задача, которая стоит перед учеными, — 
это правильное «направление» активации эпикарда: 
стимуляция процессов регенерации вместо рубцевания 
и  запуск прорегенеративного потенциала вместо про-
воспалительного. Исследования в этой области основаны 
на следующих механизмах:
•	 использование факторов, участвующих в формирова-

нии сердца (факторы транскрипции GATA4 и  GATA6; 
ретиноевая кислота и  ее рецепторы; факторы роста 
фибробластов; трансформирующие факторы роста, 
фактор роста тромбоцитов и другие);

•	 эпикардиальная трансплантация тканеинженерных 
конструкций (использование патчей и клеточных пла-
стов, содержащих биоактивные вещества, микропу-
зырьков);

•	 генетическое перепрограммирование с  помощью ви-
русных векторов;

•	 использование эмбриональных стволовых клеток или 
индуцированных плюрипотентных стволовых клеток 
в составе тканеинженерных конструкций.
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Зачастую в  современных исследованиях используют 
комбинацию указанных методов [1]. Первые успешные 
попытки терапевтического применения были произ-
ведены на популяции мышей с  помощью воздействия 
тимозином β4. Тимозин β4 представляет собой поли-
пептид, влияющий на генетический аппарат клетки. 
Он способствует регенерации тканей, обладает противо-
воспалительными свойствами, участвует в  ангиогене-
зе, влияет на дифференцировку стволовых клеток [16]. 
Недавние исследования продемонстрировали важную 
роль тимозина β4 как в физиологическом формировании 
сердца, так и  при повреждении  — у  мышей с  повреж-
денным геном сердечного тимозина β4 отмечены нару-
шения развития коронарных артерий и  формирования 
миокарда и эпикарда [29]. После перенесенного повреж-
дения концентрация тимозина β4 повышается на ранних 
этапах процесса регенерации, активируя эмбриональные 
гены эпикарда, такие как белок опухоли Вилмса (Wilms 
tumor 1, WT1) и транскрипционный фактор T-box 18 [28]. 
Активированные эпикардиальные клетки подвергались 
ЭМТ, которая приводила к  усилению их пролиферации, 
миграции в толщу миокарда к месту повреждения и по-
следующей дифференцировке в клетки сердечно-сосуди-
стой системы [9, 29].

Другой группой исследователей продемонстрировано, 
что под действием данного полипептида происходит ге-
нетическое «перепрограммирование» сердца по эмбрио
нальному типу, характеризующееся неоангиогенезом 
и образованием пула кардиомиоцитов [37]. Ведется также 
изучение совместного применения тимозина β4 и других 
клеток. В сердцах свиней, перенесших смоделированный 
инфаркт миокарда, трансплантация кардиомиоцитов, по-
лученных из индуцированных плюрипотентных стволо-
вых клеток человека, оказывала минимальное влияние 
на восстановление миокарда [32]. Однако совместное 
использование последних с  тимозин-β4-микросферами 
значительно способствовало ангиогенезу и пролиферации 
кардиомиоцитов и эндотелиоцитов, улучшало систоличе-
скую функцию левого желудочка и  уменьшало размер 
некроза [32].

В начале 2000-х годов культивированы эпикардиальные 
клетки, забранные из ушка правого предсердия человека [35]. 
Обнаружена способность этих клеток к дифференциров-
ке в  гладкомышечные под воздействием TGFβ1 или при 
инфицировании их аденовирусными векторами, экспрес-
сирующих гены, кодирующие транскрипционный фактор 
миокардин. Однако отмечено, что в процессе культивации 
эпикардиальные клетки спонтанно претерпевали ЭМТ, 
приобретая морфологию фибробластов.

В качестве альтернативного варианта был предложен 
метод синтеза in vitro функционально активных ПКЭ из 
человеческих индуцированных плюрипотентных ство-
ловых клеток. Воздействия различными дозами белков 
сигнального пути TGFβ позволили контролировать процес-
сы дифференцировки индуцированных плюрипотентных 

стволовых клеток внутри сердечно-сосудистой линии. 
Высокие дозы TGF-β способствовали уменьшению кле-
точной линии кардиомиоцитов (которая в конечном итоге 
полностью исчезла) и  экспрессии эпикардиальных мар-
керов WT1 и T-box 18. После того, как клетки были куль-
тивированы и пересевались в течение 4 дней, образовав-
шиеся ПКЭ сформировали сплошной слой с  плотными 
клеточными контактами на границе клеток. Под воздей-
ствием TGFβ1 и  оснóвного фактора роста фибробластов 
(bFGF) клетки претерпели ЭМТ и приобрели характеристи-
ки гладкомышечных клеток. При воздействии лишь bFGF 
клетки имели черты только фибробластов. В  результате 
данного исследования был разработан метод получения 
индуцированных эпикардиальных клеток из индуциро-
ванных плюрипотентных стволовых клеток, что также 
дало возможности для развития прецизионной терапии 
на основе собственных клеток пациента [44].

Были также разработаны и  химические методы на-
правления дифференцировки индуцированных плюрипо-
тентных стволовых клеток эпикарда в  гладкомышечные 
клетки и  фибробласты. Человеческие индуцированные 
плюрипотентные стволовые клетки сначала трансформи-
ровались до ранней мезодермы с помощью комбинации 
факторов, далее под действием TGF и bFGF происходила 
дифференцировка в  латеральную пластинку мезодермы 
и появление эпикардиальной линии клеток. Индуцирован-
ные проэпикардиальные клетки демонстрировали мор-
фологию эпителиальных клеток и  экспрессировали эпи-
кардиальные маркеры (такие как T-box 18, TCF21 и WT1). 
Эти клетки претерпевали ЭМТ и дифференцировку в глад-
комышечные клетки и  фибробласты. Вызывает интерес 
тот факт, что эти клетки не только выжили, но и успеш-
но имплантировались и  дифференцировались in vivo 
в  эпикарде цыплят [14, 15]. Эти исследования сделали 
возможным использование выращенных in vitro клеток 
в  качестве лечения заболеваний сердца. Во избежание 
риска иммуннопатогенной контаминации культивируемых 
тканей, ассоциированной с высокобелковой питательной 
средой, в  обоих исследованиях использовали безбелко-
вые среды и низкомолекулярные компоненты.

МЕТОДЫ ДОСТАВКИ БИОЛОГИЧЕСКИ 
АКТИВНЫХ ВЕЩЕСТВ К МЕСТУ 
ПОВРЕЖДЕНИЯ

На начальных этапах внутрисосудистое введение че-
ловеческих ПКЭ мышам проводили непосредственно 
в область кардиального некроза, что способствовало под-
держанию функции сердца со второй и вплоть до шестой 
недели после инфаркта миокарда. Было отмечено, что ПКЭ 
незначительно интегрировались в сосудистую стенку и су-
ществовали относительно короткий период времени: лишь 
небольшое количество определялось через 6 нед. Авторы 
полагают, что вклад ПКЭ в ангиогенез в основном проис-
ходит за счет паракринного механизма [43].
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В 2018 г. учеными из Москвы была проведена интра-
миокардиальная имплантация ПКЭ в область смоделиро-
ванного инфаркта миокарда у крыс линии Вистар. Клет-
ки сохраняли жизнеспособность в  течение двух недель, 
и часть клеток проявляла признаки ангиогенной диффе-
ренцировки. Несмотря на то что различий в размере рубца 
между группами не было, отмечено уменьшение выра-
женности ремоделирования левого желудочка, ограни-
чение распространенности трансмурального повреждения 
и ангиогенеза в периинфарктной зоне. Также увеличилось 
количество ПКЭ, которые мигрировали в субэпикардиаль-
ное пространство и  миокард и  участвовали в  процессах 
неоваскуляризации [2].

Другие способы, используемые для доставки био-
материалов к  месту некроза,  — это патчи и  гидрогели. 
Эти формы позволили усовершенствовать применение 
клеточных и  генетических материалов. Эпикардиально 
наложенные патчи, содержащие биоматериал, расшири-
ли возможности стимуляция репарации миокарда на мо-
делях животных. Целесообразность использования этого 
метода подтверждена экспериментально: аппликация 
патчей на эпикард не только улучшает свойства ткани, но 
и создает механическую поддержку, препятствуя дилата-
ции желудочка [27].

При аппликации патчей, обогащенных bFGF (ингибитором 
фиброза), отмечено отсутствие какой-либо иммунологиче-
ской реакции и повышение фракции выброса по сравнению 
с  контролем (55,3 ± 8,0 % против 35,1 ± 7,6 %; р < 0,001). 
Установлено и  положительное влияние на сократимость 
левого желудочка у крыс, которым проведена аппликация 
патчей с  bFGF по сравнению с  использованием необога-
щенных биопатчей (плацебо) и контрольной группой [17].

Показано, что аппликация клеток-предшественников 
непосредственно на эпикард, в  отличие инъекции вну-
три миокарда, позволяет получить лучшие результаты. 
В поры напечатанного на 3D-принтере каркаса на основе 
гиалуроновой кислоты и  желатина помещали  клетки-
предшественники кардиомиоцитов человека. Эпикар-
диальная аппликация таких сердечных матриц способ-
ствовала приживлению клеток, образованию сосудистых 
компонентов, продукции тропонина I и молекул эпители-
альной клеточной адгезии 1 (PECAM1, или CD31), а также 
долгосрочному выживанию мышей при моделировании 
у них инфаркта миокарда [13].

Предпринимались и  другие попытки использования 
коллаген-хитозановых гидрогелей для доставки тимози-
на β4 [10]. Гидрогелевые материалы, как было показано, 
способствовали структурному укреплению ткани, но не 
препятствовали ремоделированию миокарда после ин-
фаркта [4, 24]. Контролируемое высвобождение тимози-
на β4 при этом улучшало васкуляризацию поврежденного 
миокарда [10].

Для создания биопатчей могут быть использованы 
не только отдельные вещества, но и  различные типы 
клеток, в  том числе с  возможностью целенаправленной 

дифференцировки для осуществления репарации сердеч-
ной ткани. Исследователями была произведена стимуля-
ция ПКЭ факторами Wnt и Ra, что привело к направлению 
трансформации этих клеток по эпикардиальному пути. 
Далее под действием факторов bFGF и TGFβ1 они приоб-
рели мезенхимальный фенотип [5, 46].

В исследованиях на крысах была продемонстрирована 
способность мезенхимальных стволовых клеток в соста-
ве биопатчей к секреции компонентов (HIF1α — фактор, 
индуцируемый гипоксией, Hypoxia-inducible factor 1-alpha; 
тимозин  β4; VEGF  — фактор роста эндотелия сосудов, 
Vascular Endothelial Growth Factor и SDF1 — фактор стро-
мальных клеток, Stromal cell-derived factor 1), необходи-
мых для активации ПКЭ. Последние мигрируют глубоко 
в  миокард и  превращаются в  гладкомышечные клетки 
и, частично, в кардиомиоциты [39]. Подобные опыты про-
водились и отечественными учеными: разработанные био-
логические конструкции по типу клеточных пластов транс-
планировались в  область смоделированного инфаркта 
миокарда у крыс. Конструкции имели хорошую адгезив-
ную и интегративную способности. В экспериментальной 
группе среднее количество стромальных клеток (192 ± 82 
против 43 ± 36) и  площадь их распределения в  миокар-
де (191822 ± 21346 мкм2 против 45117 ± 30812 мкм2) 
оказалась значительно больше, чем в контрольной груп-
пе (р < 0,05). Отмечены также положительные результаты 
в отношении миграционной активности этих клеток в под-
лежащие слои миокарда (212 ± 39 мкм против 53 ± 34 мкм, 
р < 0,05) [3].

Эпикардиальная аппликация мезенхимальных 
стромальных клеточных пластов способствует уве-
личению продукции паракринных факторов, которые 
необходимы для осуществления ЭМТ (IGF1  — инсули-
ноподобный фактор роста 1, Insulin-Like Growth Factor 1; 
MMP2  — матриксная металлопротеиназа 2, Matrix Me­
tallopeptidase 2, HIF1α). Мезенхимальные клетки в  со-
ставе патчей продуцировали PECAM1 (Platelet-Endothelial 
Cell Adhesion Molecule 1 или CD31  — мембранный бе-
лок клеточной адгезии) на третий день после транс-
плантации. Однако эти клетки не мигрировали в  тол-
щу миокарда и  не подверглись дифференцировке 
в  кардиомиоциты, что указывает на преимущественно 
паракринное влияние их медиаторов [33]. Эти наблюде-
ния легли в основу I фазы клинических исследований, на-
правленных на лечение дилатационной кардиомиопатии. 
Несмотря на то что инфаркт миокарда не являлся первич-
ным повреждением в  данном исследовании, описанные 
клеточные пласты продемонстрировали многообещающие 
данные в виде хорошего профиля безопасности и восста-
новления функции сердца [18]. Дальнейшие исследования 
направлены на изучение как возможностей использования 
мезенхимальных клеточных пластов при остром инфаркте 
миокарда, так и механизмов их действия.

Еще с  1990-х годов активно использовали в  биоин-
женерии самособирающиеся пептиды  — это короткие 
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синтетические пептиды, обладающие гидрофильными 
и гидрофобными последовательностями, которые прида-
ют им особые молекулярные свойства, обеспечивающие 
их уникальную способность спонтанно организовываться 
в упорядоченные структуры. Самособирающиеся пептиды 
также нашли применение в  отношении эпикардиальной 
репарации. Они демонстрируют хорошую биосовмести-
мость, безопасность и свойства биодеградации (биоразло-
жения), которые имитируют естественный внеклеточный 
матрикс сердца [21]. Обогащенный самособирающимся 
пептидом гидрогель создает в  миокарде микроокруже-
ние, сходное с экстрацеллюлярным матриксом и способ-
ствующее васкуляризации [12]. В 2021 г. группа китайских 
ученых получила данные, что интрамиокардиальная инъ-
екция прикрепленного к такому пептиду тимозина β4 ак-
тивирует эпикард, улучшает репарацию миокарда и под-
держивает функцию сердца после инфаркта миокарда. 
Постоянное равномерное высвобождение тимозина  β4 
способствует дифференцировке ПКЭ как в клетки сердеч-
но-сосудистой системы, так и в лимфатические эндотели-
альные клетки. Авторы полагают, что ПКЭ при стимуляции 
мигрируют в субэпикардиальный слой и миокард, транс-
формируются в  клетки, которые выстилают стенку лим-
фатических капилляров. Таким образом, инициируется 
процесс лимфоангиогенеза, необходимый, вероятно, для 
оттока иммунных клеток и провоспалительных цитокинов 
от очага некроза, уменьшая выраженность отека, местно-
го воспаления и постинфарктного склероза [40].

ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ 
НИЗКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ 
ДЛЯ СТИМУЛЯЦИИ РЕПАРАТИВНОГО 
ПОТЕНЦИАЛА ЭПИКАРДА

В недавних исследованиях изучалась возможность 
применения малых молекул для стимуляции эпикарди-
альной дифференцировки и  ЭМТ после инфаркта мио-
карда у крыс. Низкомолекулярный сигнальный модулятор 
Wnt (ингибитор сигнализации Wnt ICG‑001) содействует 
ЭМТ и  улучшает систолическую функцию у  крыс, пере-
несших инфаркт [26].

Продемонстрировано, что выращенные эпикардиаль-
ные клетки могут быть посеяны на биопатчи из внеклеточ-
ного матрикса, полученного от кардиальных фибробла-
стов. У мыши с индуцированным инфарктом аппликация 
таких патчей на поверхность сердца привела к ускорению 
ЭМТ и  значительной дифференцировке клеток в  фибро-
бласты и гладкомышечные клетки. Однако эффективное 
воздействие таких патчей на функцию поврежденного 
миокарда пока ограничено [6].

Исследование первичных человеческих ПКЭ позво-
лило выявить около 7400 структурно разнообразных со-
единений, которые ответственны за регуляцию широкого 
спектра биологических мишеней, среди них выявлены 

и  молекулы, модифицирующие пролиферацию челове-
ческих ПКЭ. Таким образом, дальнейшее изучение ме-
таболических и  фармакокинетических принадлежностей 
этих микромолекулярных соединений открывает широкие 
горизонты для исследований in vivo [22].

Таким образом, на данный момент существуют сле-
дующие способы активации репаративного потенциала 
эпикарда:

1. Генетическое перепрограммирование клеток с  по-
мощью вирусов путем введения в полость перикарда ви-
русных векторов, которые встраиваются в  генетический 
материал фибробластов и  вызывают дифференцировку 
в различные клетки миокарда.

2. Локальное применение паракринных факторов, уча-
ствующих в  формировании сердца (факторы транскрип-
ции GATA4 и GATA6; тимозин β4 и др.). Имеются данные, 
что перикардиальная жидкость пациентов с ишемической 
болезнью сердца стимулировала рост и выживание кле-
точных структур сердца.

3. Эпикардиальная трансплантация тканеинженерных 
конструкций, их использование во время проведения 
аортокоронарного шунтирования у  пациентов с  тяжелой 
постинфарктной сердечной недостаточностью продемон-
стрировала свою эффективность и безопасность, что по-
зволяет расширить применение этого метода.

ЗАКЛЮЧЕНИЕ
Предположение о  регенеративном потенциале серд-

ца было оправдано после прицельного изучения свойств 
и характеристик эпикарда. В процессе эмбриогенеза эпи-
кард продуцирует большое количество мультипотентных 
прогениторных клеток сердца, которые в  дальнейшем 
подвергаются эпителиально-мезенхимальной трансфор-
мации. Эти клетки мигрируют в  толщу миокарда и  дают 
начало различным кардиальным типам клеток, в  том 
числе кардиомиоцитам. Эпикард участвует в синтезе па-
ракринных факторов, которые обеспечивают рост коро-
нарных сосудов, а  также дифференцировку и  развитие 
миокарда в целом.

В основе разрабатываемых механизмов восстанов-
ления миокарда лежат различные способы стимуляции 
активности эпикарда по эмбриональному пути. Наиболее 
перспективно применение тканеинженерных конструк-
ций, содержащих прорегенеративные факторы. При этом 
создается специфическое микроокружение за счет фор-
мирования полноценного клеточного пласта, который 
позволяет поддержать жизнеспособность клеток и  их 
функциональную активность. Данные пласты содержат 
ПКЭ и  паракринные факторы, позволяющие направлять 
дифференцировку клеток по определенному пути (кар-
диомиоциты, эндотелиоциты, гладкомышечные клетки). 
Имплантация пластов, содержащих комбинации ПКЭ 
с  мультипотентными мезенхимальными стромальными 
клетками, вызывает наибольший интерес. Эти модели 
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продемонстрировали свою эффективность и  безопас-
ность на уровне доклинических испытаний, что позволит 
в  ближайшем будущем использовать их в  клинических 
исследованиях.

В настоящее время предложены и активно изучаются 
в России и за рубежом различные методы активации эпи-
карда и способы доставки биологически активных веществ 
к месту повреждения. К таким, показавшим свою эффек-
тивность, молекулам относится тимозин β4, трансформи-
рующий фактор роста  β (TGFβ), оснóвный фактор роста 
фибробластов (bFGF) и некоторые другие. Использование 
тканеинженерных конструкций, как, например, биопат-
чи и  гидрогели, обогащенных прогениторными клетками 
и паракринными факторами, в частности bFGF, в экспери-
ментах in vitro показало эффективность таких способов до-
ставки. Генетическое перепрограммирование с  помощью 
вирусных векторов и применение малых молекул для сти-
муляции эпителиально-мезенхимальной трансформации 
также относятся к перспективным направлениям.

Однако, несмотря на успех описанных эксперимен-
тальных моделей, применение указанных методик в  ре-
альной клинической практике пока не нашло широкого 
применения. Единичные сообщения свидетельствуют 
о высоком потенциале стимуляции эпикарда при лечении 
больных инфарктом миокарда. В то же время требуются 
дальнейшие исследования механизмов миграции и диф-
ференцировки эпикардиальных клеток in vitro, изучение 

не только краткосрочных результатов, но и оценки долго-
срочной эффективности и  безопасности предложенных 
подходов.
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