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Изучение гематоэнцефалического барьера началось на рубеже XVIII–XIX вв. На сегодняшний день благодаря боль-
шому количеству проведенных исследований очевидно, что данная система имеет невероятно сложную структуру на 
органном, тканевом и молекулярно-генетическом уровне. Возрастает научный интерес к изменениям в гематоэнцефа-
лическом барьере, которые происходят при патологических неопластических процессах. Как оказалось, перестройка 
этой системы является важным и неотъемлемым этапом патогенеза глиобластомы, опухоли центральной нервной 
системы с самым неблагоприятным прогнозом. Гетерогенная структура с формированием участков измененного кле-
точного состава, неравномерная и неконтролируемая проницаемость, обеспечиваемая большим количеством транс-
портных везикул и разрушением плотных контактов между эндотелиоцитами, активный отток молекул из паренхимы 
благодаря непрерывному синтезу новых порций ABC-белков переносчиков, создание незрелой сосудистой сети под 
действием высокой экспрессии VEGF-клетками опухоли — главные характеристики гематоопухолевого барьера, фор-
мирующегося при глиобластоме и поддерживающего ее выживаемость. Дальнейшее изучение особенностей строения 
и механизмов функционирования данной системы у пациентов с глиобластомой  – новая и перспективная задача 
в современной нейроонкологии, решение которой не только расширит представление о биологии и понимание пато-
генеза самой распространенной и злокачественной опухоли головного мозга, но и позволит повысить эффективность 
лечения пациентов и улучшить прогноз.
Ключевые слова: гематоэнцефалический барьер; глиобластома; гематоопухолевый барьер; головной мозг; нейро-
онкология.
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The research of the blood-brain barrier began at the turn of the 18th–19th centuries. To date due to the large number of 
studies conducted, it is obvious that this system has an impossibly complex structure at the organ, tissue and molecular 
genetic levels. Scientific interest in the changes in the blood-brain barrier that occur during pathological neoplastic 
processes is increasing. As it turned out, the restructuring of this system is an important and integral stage in the 
pathogenesis of glioblastoma, a tumor of the central nervous system with the most unfavorable prognosis. Hetero-
geneous structure with the formation of areas of altered cellular composition, uneven and uncontrolled permeability, 
provided by a large number of transport vesicles and the destruction of tight contacts between endotheliocytes, active 
outflow of molecules from the parenchyma due to the continuous synthesis of new portions of ABC-carrier proteins, 
the creation of an immature vascular network under the influence of high expression of VEGF by tumor cells  — the 
main characteristics of the hematopoietic barrier, formed in glioblastoma and supporting its survival. The further 
research of the features of the structure and mechanisms of functioning of the blood-brain barrier in glioblastoma is 
a new and promising task in modern neuro–oncology, the solution of which will not only expand the understanding 
of the biology of the most common and malignant brain tumor but will also improve the effectiveness of treatment 
of patients and improve the prognosis.
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Термин «гематоэнцефалический барьер» (ГЭБ) 
был введен в  1921  г. Линой Соломоновной 
Штерн [24]. В то время под данным понятием под-
разумевался особый защитный аппарат, способный 
«просеивать» в паренхиму мозга вещества, присут-
ствующие в крови. Благодаря большому количеству 
проведенных исследований за последние 100  лет 
сформировалось четкое представление, что ГЭБ — 
это сложно организованная динамическая система, 
выполняющая не только защитную функцию, но 
и поддерживающая гомеостаз, обеспечивая необхо-
димым питанием структуры головного мозга.

Детальные и  тщательные электромикроскопи-
ческие исследования позволили подробно изучить 
структурную организацию ГЭБ. Анатомическими 
элементами, из которых складывается данная си-
стема, служат морфологически и  функционально 
связанные между собой эндотелиоциты капилля-
ров, перициты и  астроциты, объединенные поня-
тием «нейроваскулярная единица» [1–3, 23].

Следует отметить, что эндотелиоциты ГЭБ от-
личаются от аналогичных клеток других органов 
и систем [14, 19]. Для эндотелиальных клеток ГЭБ 
при отсутствии патологического процесса харак-
терно весьма ограниченное количество адгезивных 
молекул для лимфоцитов [14, 23]. Эндотелиоциты 

ГЭБ также характеризуются низким содержанием 
трансцитозных везикул и  наличием плотных кон-
тактов, полностью герметизирующих межклеточ-
ные пространства и  создающих высокое транс-
эндотелиальное электрическое сопротивление, что 
значительно ограничивает парацеллюлярную диф-
фузию [12] (рис. 1, часть A). Основными строи-
тельными элементами плотных контактов являются 
клаудин‑5 и окклюдины [17]. Данные белки имеют 
внутриклеточные домены, связанные с  каркасным 
белком ZO1 (зонулаокклюдин‑1), тем самым регу-
лируя цитоскелет.

Эндотелиоцитам отведена главная роль контро-
ля проницаемости ГЭБ [3, 11] (рис. 1, часть B). 
За счет наличия плотных контактов между эндоте-
лиальными клетками парацеллюлярный транспорт 
возможен лишь для малых гидрофильных молекул 
(ионы, вода). Трансцеллюлярная диффузия в  ГЭБ 
допустима, однако тоже имеет жесткие ограниче-
ния: отсутствие заряда, липофильность и  низкая 
молекулярная масса (менее 400 Да). Для транспор-
та более сложных веществ эндотелиальные клетки 
ГЭБ экспрессируют SLC (транспортные белки рас-
творенных веществ) и  ряд рецепторов, регулиру-
ющих рецептор-опосредованный эндоцитоз, часть 
которых приведена ниже.

Транспортные системы гематоэнцефалического барьера
Транспортная 

система Транспортер Субстрат Направление 
транспорта

Транспорт, опос-
редованный пере-
носчиками раство-

ренных веществ 
(Solutecarrier, 

SLC)

GLUT‑1 (транспортер глюкозы‑1) Глюкоза, сахара В паренхиму мозга
SMIT (котранспортер натрия/мио-инозитола) Мио-инозитол В паренхиму мозга

CAT‑1, CAT‑3(катионный переносчик аминокислот) Лизин, аргинин В паренхиму мозга

LAT1–2 (транспортер больших нейтральных аминокислот) Глутамат, гистидин, трипто-
фан, тирозин, аспарагин и др. В паренхиму мозга

GLYT‑1 (транспортер глицина) Глицин В паренхиму мозга
MCT‑1 (транспортер монокарбоксилата) Лактат, кетоновые тела В паренхиму мозга

FATP‑1, FATP‑4, MSFD2A/NLS‑1 (транспортеры жирных кислот) Незаменимые жирные 
кислоты В паренхиму мозга

ENTI1-2, CNTI1-3 (нуклеозидные транспортеры) Нуклеозиды, нуклеиновые 
кислоты В паренхиму мозга

MCT‑8, OATP1C1 (транспортеры гормонов) Тиреоглобулины (Т3 и Т4) В паренхиму мозга
SMVT (натрий-зависимый мультивитаминный транспортер) Витамины В паренхиму мозга

OAT2-3, OCT1-3, OCTN‑2 (переносчики органических анионов и катионов) Анионы и катионы В паренхиму мозга
SNAT2-3, SNAT‑5 (натрий связанный переносчик нейтральных 

аминокислот)
Аланин, пролин, серин, 

глицин, глутамин
Из паренхимы 

мозга

ASCT‑1 (переносчик аланина, серина, цистеина) Аланин, серин, цистеин, 
глицин, изолейцин, лейцин Из паренхимы мозга

TAUT (переносчик таурина) Таурин Из паренхимы мозга

Транспорт, 
опосредованный 

рецепторами

TfR (рецептор трансферрина) Трансферрин В паренхиму мозга
IR (инсулиновый рецептор) Инсулин В паренхиму мозга
LEP-R (рецептор лептина) Лептин В паренхиму мозга

V1 (рецептор вазопрессина) Вазопрессин Двунаправленный
LRP‑1 (липопротеиновый рецептор) Липопротеины Из паренхимы мозга

Транспорт, опос-
редованный АТФ-

связывающими 
кассетными 

транспортерами

P-gp, MDR1 (Р-гликопротеин) Токсины и ксенобиотики, 
в том числе лекарственные 

препараты
Из паренхимы мозга

MRP (другие белки мультилекарственной устойчивости)
BCRP (белок устойчивости к раку молочной железы)
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Главным эффлюксным механизмом ГЭБ считает-
ся транспорт, опосредованный АТФ-связывающими 
кассетными переносчиками, белками ABC, экс-
прессируемыми на апикальной мембране эндоте-
лиоцитов [11]. Присутствие этих белков способ-
ствует быстрому выведению из паренхимы мозга 
токсических веществ и  продуктов обмена.

При том что проницаемость ГЭБ определяет-
ся в  первую очередь свойствами эндотелиоцитов, 
регулирование этого процесса происходит посред-
ством перицитов и  астроцитов (рис. 1, часть B). 
Проведенные генетические исследования ГЭБ про-
демонстрировали активность WNT-b-катенинового 
(Wingless) и SHH-сигнального (SonicHedgehog) пу-
тей [5, 8, 14]. Через данные сигнальные пути пе-
рициты и  астроциты регулируют функциональное 
состояние и  экспрессию соединительных и  транс-
портных белков в  эндотелии, тем самым коррек-
тируя трансклеточный и  парацеллюлярный транс-
порт, поддерживая гомеостаз центральной нервной 
системы.

Перициты  — периваскулярные клетки, встро-
енные в  базальную мембрану, — прикрепляются 
к  эндотелиальным клеткам благодаря синтезу по-
следними PDGFβ (тромбоцитарного фактора рос
та β), действующего как аттрактант для перицитов, 
экспрессирующих PDGFRβ (рецептор к тромбоци-
тарному фактору роста β) [4, 8] (рис. 1, часть  D). 
На экспериментальной модели было показано, 
что дефицит перицитов приводит к  нарушению 
транспорта через ГЭБ омега‑3 жирных кислот, 
необходимых для нормального функционирования 
нейронов [7]. Как оказалось, регуляция данного 
процесса происходит через индукцию перицитами 
белка-переносчика MSFD2A/NLS1. Помимо это-
го, перициты играют важную роль в  поддержание 
каркасной структуры ГЭБ, синтезируя компоненты 
внеклеточного матрикса (протеогликан, коллаген, 
эластин) и  сократительные белки (актин, тропо-
миозин, миозин), тем самым моделируя диаметр 
капилляров и  регулируя мозговой кровоток [13]. 
Стоит отметить и роль перицитов в реализации ра-
боты иммунной системы. Перициты контролируют 
экспрессию молекулы межклеточной адгезии лим-
фоцитов (ICAM‑1) и  молекулу адгезии сосудисто-
го эндотелия (VCAM‑1) (рис. 1, часть C), а  также 
синтезируют ИЛ‑1β и  ИЛ‑6 [23].

Еще одним важным компонентом нейроваску-
лярной единицы является астроцит  — глиальная 
клетка с  большим количеством длинных ветвя-
щихся отростков, с  помощью которых астроцит 
контактируют с  нейронами и  эндотелием, таким 
образом обеспечивая связь между нейронной и со-
судистой сетью. Важной функцией астроцитов слу-

Рис. 1.	 Строение и функционирование гематоэнцефа-
лического барьера в физиологических условиях. 
А  — эндотелиоциты соединены между собой плот-
ными контактами, состоящими из белков клаудина-5 
и окклюдина. У данных соединений имеется внутри-
клеточный домен, регулирующий цитоскелет через 
зонулаокклюдин-1 (ZO1); B  — показаны основные 
транспортные механизмы в эндотелии (трансцеллю-
лярный, парацеллюлярный, с помощью транспортных 
белков растворенных веществ (SLC) и белка рецептор-
опосредованного эндоцитоза (РОЭ) и эффлюкс-путь 
через белки АBC (АТФ-связывающие кассетные транс-
портеры). Регуляция экспрессии данных переносчиков 
контролируется астроцитами и перицитами посред-
ством WNT-β-катенинового и SHH-сигнального путей; 
C — перициты и астроциты совместно экспрессируют 
ангиотензин-1 (Ang1), отвечающий за формирование 
плотных контактов между эндотелиоцитами. Пери-
циты контролируют экспрессию адгезивных молекул 
на эндотелиоцитах (ICAM-1, VCAM-1); D — фиксация 
перицитов на базальной мембране обеспечивается 
благодаря экспрессии им рецептора тромбоцитарного 
фактора роста β (PDGFRβ) и синтеза эндотелиоцитами 
тромбоцитаного фактора роста β (PDGFβ)

Fig. 1.	 The structure and functioning of the blood-brain bar-
rier in physiological conditions. A. Endotheliocytes 
are connected by tight contacts consisting of proteins 
claudin-5 and occludin. These compounds have an 
intracellular domain that regulates the cytoskeleton 
through ZO1. B. The main transport mechanisms in 
the endothelium (transcellular, paracellular, by SLC and 
receptor-mediated endocytosis, and the efflux pathway 
through ABC proteins are shown. The regulation of the 
expression of these carriers is controlled by astrocytes 
and pericytes via the WNT-catenin and SHH signaling 
pathways. C. Pericytes and astrocytes express Ang1, 
which is responsible for the formation of tight contacts 
between endotheliocytes. Pericytes control the expres-
sion of adhesive molecules on endotheliocytes (ICAM-1, 
VCAM-1). D. Fixation of pericytes on the basement 
membrane is ensured by their expression of PDGFRβ 
and synthesis by endotheliocytes of PDGFβ
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жит сохранение постоянства водно-электролитного 
баланса головного мозга. На их отростках в  зонах 
контакта с эндотелием находится большое количе-
ство аквапорина‑4 (AQP4), способствующего вы-
ведению интерстициальных растворенных веществ 
из субарахноидального пространства, транспор-
теров для таких нейромедиаторов, как глутамат, 
гамма-аминомасляная кислота и  глицин, а  также 
Na+/H+-обменников, бикарбонатных транспортеров, 
калиевых каналов, Na+/K+-АТФазы и  Na+/K+/2Cl–-
котранспортеров, с помощью которых регулируется 
гомеостаз ионов [2]. Помимо этого, астроциты мо-
гут повышать экспрессию P-гликопротеина (P-gp), 
обеспечивая быстрое выведение токсических ве-
ществ. Совместно астроциты и  перициты синте-
зируют ангиотензин‑1 (Ang‑1), который связывает-
ся с  рецептором на эндотелиоцитах, что приводит 
к  снижению проницаемости ГЭБ (через усиление 
плотных контактов) и ингибированию трансцеллю-
лярной диффузии [23] (рис. 1, часть C).

Таким образом, анатомические структуры, из ко-
торых складывается ГЭБ, функционируя совместно 
и  зависимо друг от друга, не только защищают 
паренхиму головного мозга, но и  регулируют его 
функционирование и  метаболизм. Изучение меха-
низмов работы ГЭБ имеет не только фундаменталь-
ное, но и прикладное клиническое значение. Иссле-
дование особенностей функционирования ГЭБ при 
патологических процессах можно рассматривать как 
перспективные с целью повышения эффективности 
лекарственной терапии и продления резистентности.

Гематоопухолевый барьер
Изменение ГЭБ — неотъемлемый компонент па-

тогенеза глиобластомы. Быстрый диффузный рост 
данного новообразования, потребность в  большом 
количестве питательных веществ и необходимость 
формирования защитного иммуносупрессивного 
окружения приводят к  разрушению как анатоми-
ческой, так и  функциональной структуры ГЭБ 
и формированию гематоопухолевого барьера (ГОБ) 
[6, 8, 11, 20].

Инфильтративный рост глиобластомы смещает 
и разрушает отростки астроцитов, нарушая водно-
электролитный гомеостаз, вызывая задержку воды 
и  метаболитов, что влечет за собой отек вещества 
головного мозга (рис. 2, часть А). Кроме того, ре-
активные астроциты экспрессируют сфингозин‑1-
фосфатный рецептор‑3 (S1PR‑3), что приводит 
к повышенной проницаемости ГОБ для иммунных 
клеток [13, 15].

Перициты в  глиобластоме могут дифференци-
роваться из опухолевых стволовых клеток [4, 26] 
(рис. 2, часть B). Для ГОБ характерно неравномерное 

Рис. 2.	 Строение и функционирование гематоопухолевого ба-
рьера. А — разрушение плотных контактов из клауди-
на-5 и окклюдина приводит к повышенной неконтро-
лируемой парацеллюлярной диффузии и нарушению 
цитосклелета  эндотелиоцита. Инфильтративный рост 
глиобластомы вызывает смещение и разрушение от-
ростков астроцитов. Реактивные астроциты экспрес-
сируют сфингозин-1-фосфатный рецептор-3 (S1PR-3), 
что усиливает инфильтрацию Т-лимфоцитами; 
B — эндотелиоциты гематоопухолевого барьера ха-
рактеризуются потерей многих переносчиков и на-
личием большого количества транспортных везикул 
и белков АВС; C — распределение перицитов гемато-
опухолевого барьера неравномерное с чередованием 
зон их отсутствия и областей со слоистой структурой. 
Дифференцирующиеся из стволовых опухолевых 
клеток перициты экспрессируют в большом коли-
честве эндосиалин (CD248). Формирование новых 
сосудов в глиобластоме происходит посредством 
синтеза опухолевыми клетками и эндотелиоцитами 
VEGF (фактор роста эндотелия сосудов). GLI-1 — бе-
лок цинкового пальца-1

Fig. 2.	 The structure and functioning of BTB. A  — the de-
struction of tight junctions (claudin-5 and occlud-
ing) leads to increased uncontrolled paracellular 
diffusion and disruption of the endotheliocyte cyto-
skeleton. Infiltrative growth of glioblastoma causes 
displacement and destruction of astrocyte processes. 
Reactive astrocytes express S1PR-3, which enhances 
infiltration by T-lymphocytes; B  — endotheliocytes 
are characterized by the loss of many carriers and 
the presence of a large number of transport vesicles 
and ABC proteins; C — the distribution of pericytes is 
uneven with alternating zones of their absence and 
areas with a  layered structure. Differentiating from 
stem tumor cells, pericytes express a large amount of 
CD248. The formation of new vessels in glioblastoma 
occurs through the synthesis of VEGF by tumor cells 
and endotheliocytes
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распределение перицитов на эндотелии с  формиро-
ванием зон отсутствия данных клеток и  областей 
с  большой их концентрацией. Такая структура ГОБ 
необходима, с  одной стороны, для улучшения про-
ницаемости для питательных веществ, учитывая 
выраженную пролиферацию клеток глиобластомы, 
а  с  другой  — для формирования зон дополнитель-
ного защитного барьера. На сегодняшний день уже 
установлена обратная корреляция между концентра-
цией перицитов в ГОБ при глиобластоме и эффектив-
ностью химиотерапии [26]. Перициты глиобластом 
активно синтезируют эндосиалин (CD248), который 
играет важную роль в  поддержании микроцирку-
ляторного русла опухоли [18]. Стоит отметить, что 
экспрессия данного белка наблюдается только в зло-
качественных опухолях.

Значительные изменения наблюдаются и  в  эн-
дотелиальном слое (рис. 2, часть C). Разрушение 
плотных контактов между эндолиоцитами приво-
дит к  повышенной парацеллюлярной диффузии 
через ГОБ, а  снижение синтеза таких переносчи-
ков-транспортеров, как GLU‑1 (транспортер глю-
козы‑1) и  MSFD2A/NLS1, увеличивает количество 
трансцитозных везикул [8, 22]. Для эндотелио-
цитов ГОБ характерна повышенная экспрессия 
белков ABC, элиминирующих токсические веще-
ства, в  том числе лекарственные препараты, тем 
самым снижая эффективность противоопухолевой 
терапии. Помимо этого, эндотелиальные клетки 
глиобластом и  сама опухоль экспрессируют боль-
шое количество VEGF (фактор роста эндотелия 
сосудов), стимулирующего формирование новых 
незрелых сосудов, что приводит к  еще большему 
разрушению эндотелия [11].

Стоит отметить, что в  глиобластоме существу-
ют зоны и  с  интактным ГЭБ с  сохранением всех 
физиологических свойств [11, 16, 21, 25]. Сохране-
ние областей с  интактным ГЭБ служит защитным 
механизмом глиобластомы от действия различных 
токсических, в  том числе противоопухолевых, ве-
ществ.

В настоящее время ведется активное изучение 
молекулярно-генетического взаимодействия между 
глиобластомой и  ГОБ. В  ряде научных работ, по-
священных данному вопросу, была обнаружена вы-
сокая экспрессия в опухоли белка цинкового паль-
ца‑1 (GLI‑1), белка-стимулятора SHH-сигнального 
пути [7, 9, 10] (рис. 2, часть C). Гиперактивация 
данного каскада приводит к  быстрой пролифера-
ции, высокой миграционной активности, поддер-
жанию стволовых опухолевых клеток и  синтезу 
дополнительных порций АВС-белков. На экспери-
ментальной модели было показано, что стимуляция 
экспрессии GLI1 происходит посредством синтеза 

белка SHH астроцитами и  эндотелиальными клет-
ками, окружающими глиобластому [10].

В заключение можно сказать, что исследования 
патофизиологических процессов, определяющих 
взаимодействие между глиобластомой и  ГЭБ/ГОБ, 
продолжаются. В  значительной степени от разре-
шения сложных, интимных вопросов патогенеза 
и  патоморфоза этого онкологического заболевания 
зависит прогноз и тактика лечения опухоли. На се-
годняшний день сформировалось четкое понимание, 
что эффективность противоопухолевой терапии за-
висит не только от молекулярно-морфологических 
характеристик опухоли, но и  от функционального 
состояния ГЭБ и ГОБ, определяющих возможность 
как прямого взаимодействия лекарственного пре-
парата с  опухолевыми клетками, так и  выжива-
емость клеток глиобластомы при экстремальных 
воздействиях. Дальнейшее изучение структурно-
функциональных особенностей этих барьеров 
приведет к  более глубокому пониманию биологи-
ческого поведения глиобластомы и определит спе
цифические «терапевтические окна», что повысит 
эффективность и  безопасность лечения.
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