Диагностика солитарных очаговых образований лёгких и стратегия диспансерного наблюдения за пациентами

Обложка

Цитировать

Полный текст

Аннотация

Солитарные очаговые образования (узлы) в лёгких - распространённая клиническая проблема. После обнаружения солитарных очаговых узлов перед практическим врачом в первую очередь возникает вопрос о степени вероятности злокачественности и дальнейшей стратегии и тактике ведения пациента. В сообщении освещены вопросы дифференциальной диагностики солитарных очаговых узлов и современные стандарты ведения таких больных, в том числе вопросы их диспансерного наблюдения. Подчёркнута значимость междисциплинарного подхода к этой проблеме. Стратегия ведения пациентов с солитарными очаговыми образованиями включает: (1) выполнение компьютерной томографии, сравнение её данных с предшествующими; (2) оценку края, размера, типа кальцификации, типа солитарного очагового узла (солидный, субсолидный); (3) оценку риска злокачественности. Дальнейшие действия могут осуществляться по алгоритмам: узел ≤8 мм; узел >8 мм. Согласно скрининговому исследованию по раннему выявлению рака лёгких у курильщиков с высоким риском развития злокачественной опухоли, солитарные очаговые узлы встречаются в 50% случаев. При выборе стратегии необходимо проинформировать пациента обо всех плюсах и минусах диспансерного наблюдения при помощи компьютерной томографии. Основная его цель - оградить пациента с узелками доброкачественного генеза от нежелательных инвазивных процедур, тем более если нет необходимости в лечении. Данное преимущество ставят на одну чашу весов, а на вторую - риск несвоевременной диагностики рака и чрезмерного облучения. В свете этого всех пациентов с солитарными очаговыми узлами неуточнённой этиологии следует направлять в специализированный пульмонологический центр для мультидисциплинарной оценки экспертами - пульмонологами, торакальными хирургами, специалистами по лучевой диагностике и патоморфологами, что позволяет выработать наиболее оптимальную стратегию ведения данных пациентов.

Об авторах

Владимир Алексеевич Порханов

Кубанский государственный медицинский университет; Научно-исследовательский институт - Краевая клиническая больница №1 им. С.В. Очаповского

Автор, ответственный за переписку.
Email: bolotowa_e@mail.ru

Лариса Владимировна Шульженко

Кубанский государственный медицинский университет; Научно-исследовательский институт - Краевая клиническая больница №1 им. С.В. Очаповского

Email: bolotowa_e@mail.ru

Игорь Станиславович Поляков

Кубанский государственный медицинский университет; Научно-исследовательский институт - Краевая клиническая больница №1 им. С.В. Очаповского

Email: bolotowa_e@mail.ru

Елена Валентиновна Болотова

Кубанский государственный медицинский университет; Научно-исследовательский институт - Краевая клиническая больница №1 им. С.В. Очаповского

Email: bolotowa_e@mail.ru

Алексей Алексеевич Смолин

Научно-исследовательский институт - Краевая клиническая больница №1 им. С.В. Очаповского

Email: bolotowa_e@mail.ru

Список литературы

  1. Bai R.J., Cheng X.G., Qu H. et al. Solitary pulmonary nodules: comparison of multi-slice computed tomography perfusion study with vascular endothelial growth factor and microvessel density. Chi. Med. J. 2009; 122 (5): 541-547.
  2. Balekian A.A., Silvestri G.A., Simkovich S.M. et al. Accuracy of clinicians and models for estimating the probability that a pulmonary nodule is malignan. Ann. Am. Thorac Soc. 2013; 10: 629-635. http://dx.doi.org/10.1513/AnnalsATS.201305-107OC
  3. Benjamin M.S., Drucker E.A., McLoud T.C., Shepard J.A. Small pulmonary nodules: detection at chest CT and outcome. Radiology. 2003; 226: 489-493. http://dx.doi.org/10.1148/radiol.2262010556
  4. Diederich S., Lenzen H. Radiation exposure associated with imaging of the chest: comparison of different radiographic and computed tomography techniques. Cancer. 2000; 89: 2457-2460. http://dx.doi.org/10.1002/1097-0142(20001201)89:11+<2457::AID-CNCR22>3.0.CO;2-7
  5. Divisi D., Di Tommaso S., Di Leonardo G. et al. 18-fluorine fluorodeoxyglucose positron emission tomography with computerized tomography versus computerized tomography alone for the management of solitary lung nodules with diameters inferior to 1.5 cm. Thorac Cardiovasc. Surg. 2010; 58: 422-426. http://dx.doi.org/10.1055/s-0030-1249945
  6. Fletcher J.W., Kymes S.M., Gould M. et al. A comparison of the diagnostic accuracy of 18F-FDG PET and CT in the characterization of solitary pulmonary nodules. J. Nucl. Med. 2008; 49:179-185. http://dx.doi.org/10.2967/jnumed.107.044990
  7. Gould M.K., Donington J., Lynch W.R. et al. Evaluation of individuals with pulmonary nodules: when is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013; 143: e93S-e120S. http://dx.doi.org/10.1378/chest.12-2351
  8. Grgic A., Yüksel Y., Gröschel A. et al. Risk stratification of solitary pulmonary nodules by means of PET using (18)F-fluorodeoxyglucose and SUV quantification. Eur. J. Nucl. Med. Mol. Imaging. 2010; 37: 1087-1094. http://dx.doi.org/10.1007/s00259-010-1387-3
  9. Gribetz A.R., Damsker B., Bottone E.J. et al. Solitary pulmonary nodules due to nontuberculous mycobacterial infection. Am. J. Med. 1981; 70: 39-43. http://dx.doi.org/10.1016/0002-9343(81)90409-5
  10. Hasegawa M., Sone S., Takashima S. et al. Growth rate of small lung cancers detected on mass CT screening. Br. J. Radiol. 2000; 73:1252-1259. http://dx.doi.org/10.1259/bjr.73.876.11205667
  11. Isbell J.M., Deppen S., Putnam J.B.Jr. et al. Existing general population models inaccurately predict lung cancer risk in patients referred for surgical evaluation. Ann. Thorac. Surg. 2011; 91: 227-233. http://dx.doi.org/10.1016/j.athoracsur.2010.08.054
  12. Jennings S.G., Winer-Muram H.T., Tann M. et al. Distribution of stage I lung cancer growth rates determined with serial volumetric CT measurements. Radiology. 2006; 241: 554-563. http://dx.doi.org/10.1148/radiol.2412051185
  13. Kagna O., Solomonov A., Keidar Z. et al. The value of FDG-PET/CT in assessing single pulmonary nodules in patients at high risk of lung cancer. Eur. J. Nucl. Med. Mol. Imaging. 2009; 36: 997-1004. http://dx.doi.org/10.1007/s00259-009-1061-9
  14. Ko J.P., Berman E.J., Kaur M. et al. Pulmonary Nodules: growth rate assessment in patients by using serial CT and three-dimensional volumetry. Radiology. 2012; 262: 662-671. http://dx.doi.org/10.1148/radiol.11100878
  15. Li Y., Yang Z.G., Chen T.W. et al. First-pass perfusion imaging of solitary pulmonary nodules with 64-detector row CT: comparison of perfusion parameters of malignant and benign lesions. Br. J. Radiol. 2010; 83: 785-790. http://dx.doi.org/10.1259/bjr/58020866
  16. Li Y., Yang Z.G., Chen T.W. et al. First-pass perfusion imaging of solitary pulmonary nodules with 64-detector row CT: comparison of perfusion parameters of malignant and benign lesions. Br. J. Radiol. 2010; 83 (993): 785-790. http://dx.doi.org/10.1259/bjr/58020866
  17. Lillington G.A., Caskey C.I. Evaluation and management of solitary and multiple pulmonary nodules. Clin. Chest Med. 1993; 14: 111-119.
  18. Lim H.J., Ahn S., Lee K.S. et al. Persistent pure ground-glass opacity lung nodules ≥10 mm in diameter at CT scan: histopathologic comparisons and prognostic implications. Chest. 2013; 144: 1291-1299. http://dx.doi.org/10.1378/chest.12-2987
  19. Maeda R., Isowa N., Onuma H. et al. The maximum standardized uptake values on positron emission tomography to predict the Noguchi classification and invasiveness in clinical stage IA adenocarcinoma measuring 2 cm or less in size. Interact. Cardiovasc. Thorac Surg. 2009; 9: 70-73. http://dx.doi.org/10.1510/icvts.2009.202580
  20. Marchevsky A.M., Changsri C., Gupta I. et al. Frozen section diagnoses of small pulmonary nodules: accuracy and clinical implications. Ann. Thorac Surg. 2004; 78: 1755-1759. http://dx.doi.org/10.1016/j.athoracsur.2004.05.003
  21. Mayo J.R., Aldrich J., Muller N.L. Radiation exposure at chest CT: a statement of the Fleischner Society. Radiology. 2003; 228: 15-21. http://dx.doi.org/10.1148/radiol.2281020874
  22. McWilliams A., Tammemagi M.C., Mayo J.R. et al. Probability of cancer in pulmonary nodules detected on first screening CT. N. Engl. J. Med. 2013; 369: 910-919. http://dx.doi.org/10.1056/NEJMoa1214726
  23. Mehta H.J., Ravenel J.G., Shaftman S.R. et al. The utility of nodule volume in the context of malignancy prediction for small pulmonary nodules. Chest. 2014; 145: 464-472. http://dx.doi.org/10.1378/chest.13-0708
  24. Mizugaki H., Shinagawa N., Kanegae K. et al. Combining transbronchial biopsy using endobronchial ultrasonography with a guide sheath and positron emission tomography for the diagnosis of small peripheral pulmonary lesions. Lung Cancer. 2010; 68: 211-215. http://dx.doi.org/10.1016/j.lungcan.2009.06.004
  25. Mori T., Nomori H., Ikeda K. et al. Diffusion-weighted magnetic resonance imaging for diagnosing malignant pulmonary nodules/masses: comparison with positron emission tomography. J. Thorac. Oncol. 2008; 3: 358-364. http://dx.doi.org/10.1097/JTO.0b013e318168d9ed
  26. Mun M., Kohno T. Efficacy of thoracoscopic resection for multifocal bronchioloalveolar carcinoma showing pure ground-glass opacities of 20 mm or less in diameter. J. Thorac. Cardiovasc. Surg. 2007; 134: 877-882. http://dx.doi.org/10.1016/j.jtcvs.2007.06.010
  27. Naidich D.P., Bankier A.A., MacMahon H. et al. Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society. Radiology. 2013; 266: 304-317. http://dx.doi.org/10.1148/radiol.12120628
  28. Nakata M., Sawada S., Saeki H. et al. Prospective study of thoracoscopic limited resection for ground-glass opacity selected by computed tomography. Ann. Thorac. Surg. 2003; 75: 1601-1606. http://dx.doi.org/10.1016/S0003-4975(02)04815-4
  29. Nomori H., Watanabe K., Ohtsuka T. et al. Evaluation of F-18 fluorodeoxyglucose (FDG) PET scanning for pulmonary nodules less than 3 cm in diameter, with special reference to the CT images. Lung Cancer. 2004; 45: 19-27. http://dx.doi.org/10.1016/j.lungcan.2004.01.009
  30. Nomori H., Watanabe K., Ohtsuka T. et al. Fluorine 18-tagged fluorodeoxyglucose positron emission tomographic scanning to predict lymph node metastasis, invasiveness, or both, in clinical T1 N0 M0 lung adenocarcinoma. J. Thorac Cardiovasc. Surg. 2004; 128: 396-401. http://dx.doi.org/10.1016/j.jtcvs.2004.03.020
  31. Ohba Y., Nomori H., Mori T. et al. Is diffusion-weighted magnetic resonance imaging superior to positron emission tomography with fludeoxyglucose F 18 in imaging non-small cell lung cancer? J. Thorac. Cardiovasc. Surg. 2009; 138: 439-445. http://dx.doi.org/10.1016/j.jtcvs.2008.12.026
  32. Piyavisetpat N., Aquino S.L., Hahn P.F. et al. Small incidental pulmonary nodules: how useful is short-term interval CT follow-up? J. Thorac. Imaging. 2005; 20: 5-9. http://dx.doi.org/10.1097/01.rti.0000154076.06324.cf
  33. Ray J.F., Lawton B.R., Magnin G.E. et al. The coin lesion story: update 1976. Twenty years’ experience with thoracotomy for 179 suspected malignant coin lesions. Chest. 1976; 70: 332-336. http://dx.doi.org/10.1378/chest.70.3.332
  34. Revel M.P., Bissery A., Bienvenu M. et al. Are two-dimensional CT measurements of small noncalcified pulmonary nodules reliable? Radiology. 2004; 231: 453-458. http://dx.doi.org/10.1148/radiol.2312030167
  35. Revel M.P., Merlin A., Peyrard S. et al. Software volumetric evaluation of doubling times for differentiating benign versus malignant pulmonary nodules. AJR Am. J. Roentgenol. 2006; 187: 135-142. http://dx.doi.org/10.2214/AJR.05.1228
  36. Seo J.B., Im J.G., Goo J.M. et al. Atypical pulmonary metastases: spectrum of radiologic findings. Radiographics. 2001; 21: 403-417. http://dx.doi.org/10.1148/radiographics.21.2.g01mr17403
  37. Siegelman S.S., Khouri N.F., Scott W.W.Jr. et al. Pulmonary hamartoma: CT findings. Radiology. 1986; 160: 313-317. http://dx.doi.org/10.1148/radiology.160.2.3726106
  38. Song Y.S., Park C.M., Park S.J. et al. Volume and mass doubling times of persistent pulmonary subsolid nodules detected in patients without known malignancy. Radiology. 2014; 273: 276-284. http://dx.doi.org/10.1148/radiol.14132324
  39. Vansteenkiste J.F., Stroobants S.S. PET scan in lung cancer: current recommendations and innovation. J. Thorac Oncol. 2006; 1: 71-73. http://dx.doi.org/10.1016/S1556-0864(15)31516-1
  40. Weinberger S.E. Diagnostic evaluation and management of the solitary pulmonary nodule. UpToDate. 2015. Aviable at: http://www.uptodate.com/contents/diagnostic-evaluation-and-management-of-the-solitary-pulmonary-nodule (access date: 23.12.2015).
  41. Winer-Muram H.T., Jennings S.G., Meyer C.A. et al. Effect of varying CT section width on volumetric measurement of lung tumors and application of compensatory equations. Radiology. 2003; 229: 184-194. http://dx.doi.org/10.1148/radiol.2291020859
  42. Yankelevitz D.F., Henschke C.I. Does 2-year stability imply that pulmonary nodules are benign? AJR Am. J. Roentgenol. 1997; 168: 325-328. http://dx.doi.org/10.2214/ajr.168.2.9016198

© 2016 Порханов В.А., Шульженко Л.В., Поляков И.С., Болотова Е.В., Смолин А.А.

Creative Commons License

Эта статья доступна по лицензии
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах