Клинико-морфологические особенности гломерулопатий и их прогностическое значение при злокачественных опухолях различной локализации

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В обзоре литературы проанализированы результаты зарубежных исследований, которые посвящены гломерулопатиям при злокачественных новообразованиях различной локализации, полученных за последние 5 лет. Целью обзора является проведение сравнительного анализа гистологических и иммуногистохимических особенностей морфологических характеристик гломерулопатий при злокачественных новообразованиях различной локализации, а также определение специфичности выявленных особенностей. Данные исследования найдены с использованием баз данных Scopus, PubMed, Cochrane Library и ограничены датой публикации с 2019 по 2024 г. В работе выполнен детальный анализ гистологических и иммуногистохимических изменений гломерулярного аппарата при гломерулопатиях, ассоциированных с карциномами различной локализации. Выявленные изменения оценены для определения специфичности приведённых морфологических особенностей. Особое внимание уделено патогенетическим механизмам, предположительно объясняющим развитие гломерулопатий при карциномах различной локализации. Подробный анализ данных литературы по приведённой теме доказывает, что понимание гистологических и иммуногистохимических особенностей морфологических характеристик гломерулопатий при злокачественных новообразованиях способствует совершенствованию методов диагностики подобных состояний. Важность исследований в этой области невозможно переоценить, т. к. они могут предоставить новые данные для создания инновационных подходов, направленных на улучшение прогноза и качества жизни пациентов, страдающих онкологическими заболеваниями. Клетки злокачественной опухоли способны экспрессировать различные вещества, в том числе белки, которые могут приводить к развитию гломерулопатии. Анализ морфологических изменений гломерулярного аппарата позволяет выявить наличие или отсутствие патогенетической связи опухоли с гломерулопатией и скорректировать курс лечения больного. Кроме того, часть обзора посвящена разбору возможных патофизиологических механизмов развития гломерулопатий при злокачественных новообразованиях, что способствует более точной диагностике морфологических изменений клубочков, позволяет разграничить между собой специфические и параспецифические морфологические характеристики. Таким образом, обзор литературы представляет собой анализ гистологических и иммуногистохимических особенностей морфологических характеристик гломерулопатий при злокачественных новообразованиях различной локализации, с учётом значимости междисциплинарного подхода в диагностике данного состояния, как одного из клинических проявлений злокачественных опухолей.

Об авторах

Даниэль Леонидович Винников

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Автор, ответственный за переписку.
Email: danvin2004@gmail.com
ORCID iD: 0009-0001-1684-8917
ResearcherId: LJM-2852-2024

студент

Россия, 117513, Москва, ул. Островитянова, д. 1

Аделя Рамилевна Мухаметшина

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Email: Mukhametshina.dely@mail.ru
ORCID iD: 0009-0006-9862-3194

студент

Россия, 117513, Москва, ул. Островитянова, д. 1

Пётр Валерьевич Лебедев

Первый Московский государственный медицинский университет им. И.М. Сеченова

Email: petrlebedev_03@mail.ru
ORCID iD: 0009-0009-9414-8674

студент

Россия, г. Москва

Юлия Сергеевна Подвербная

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Email: julia_123_julia_123@mail.ru
ORCID iD: 0009-0002-9236-6714

студент

Россия, 117513, Москва, ул. Островитянова, д. 1

Дмитрий Владимирович Буланов

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Email: dbulanov81@gmail.com
ORCID iD: 0009-0005-3772-6643
SPIN-код: 2641-6658
Scopus Author ID: 57189492346
ResearcherId: KVY-3412-2024

канд. мед. наук, доц., каф. патологической анатомии и клинической патологической анатомии

Россия, 117513, Москва, ул. Островитянова, д. 1

Список литературы

  1. Bonilla M, Gudsoorkar P, Wanchoo R, et al. Onconephrology 2022: An Update. Kidney360. 2023;4(2):258–271. doi: 10.34067/KID.0001582022
  2. Thet Z, Lam AK, Ranganathan D, et al. Critical evaluation of cancer risks in glomerular disease. Transl Oncol. 2022;19:101376. doi: 10.1016/j.tranon.2022.101376
  3. Zhang X, Khurana A, Hirani S, et al. Paraneoplastic Glomerulonephropathy Associated With Renal Cell Carcinoma: A Descriptive Analysis of Published Reports. Cureus. 2023;15(3):e36928. doi: 10.7759/cureus.36928
  4. Galloway J. Remarks ON HODGKIN’S DISEASE. Br Med J. 1922;2(3234):1201–1208.2. doi: 10.1136/bmj.2.3234.1201
  5. Romagnani P, Kitching AR, Leung N, Anders HJ. The five types of glomerulonephritis classified by pathogenesis, activity and chronicity (GN-AC). Nephrol Dial Transplant. 2023;38(Supplement_2):ii3–ii10. doi: 10.1093/ndt/gfad067
  6. Yang CK, Lee CY, Wang HS, et al. Glomerular disease classification and lesion identification by machine learning. Biomed J. 2022;45(4):675–685. doi: 10.1016/j.bj.2021.08.011
  7. Lamba P, Nam KH, Contractor J, Kim A. Nephritic Syndrome. Prim Care. 2020;47(4):615–629. doi: 10.1016/j.pop.2020.08.003
  8. Bharati J, Chander PN, Singhal PC. Parietal Epithelial Cell Behavior and Its Modulation by microRNA-193a. Biomolecules. 2023;13(2):266. doi: 10.3390/biom13020266
  9. Liu S, Wan Y, Hu Z, et al. Nephrotic syndrome associated with solid malignancies: a systematic review. BMC Nephrol. 2024;25(1):215. doi: 10.1186/s12882-024-03632-9
  10. Mizdrak M, Smajic B, Mizdrak I, et al. Endocrine Disorders in Nephrotic Syndrome-A Comprehensive Review. Biomedicines. 2024;12(8):1860. doi: 10.3390/biomedicines12081860
  11. Yu X, Fan Z, Chen W, Wang Z. Lung cancer with nephrotic syndrome as a paraneoplastic syndrome: A case report. Mol Clin Oncol. 2020;13(6):86. doi: 10.3892/mco.2020.2156
  12. Kaira K, Amano H, Imai H, et al. Membranous Nephropathy as a Paraneoplastic Syndrome in Cancer of Unknown Primary. In Vivo. 2024;38(3):1503–1508. doi: 10.21873/invivo.13598
  13. Wang L, Wang J, Xu A, et al. Future embracing: exosomes driving a revolutionary approach to the diagnosis and treatment of idiopathic membranous nephropathy. J Nanobiotechnology. 2024;22(1):472. doi: 10.1186/s12951-024-02633-y
  14. Garkusha TA, Stolyarevich ES, Khorzhevsky VA, Ivliev SV. Glomerulopathy in kidney neoplasms: frequency of occurrence, structure of morbidity. Russian Journal of Archive of Pathology. 2023;85(2):21–26. doi: 10.17116/patol20238502121
  15. Rosner MH, Jhaveri KD, McMahon BA, Perazella MA. Onconephrology: The intersections between the kidney and cancer. CA Cancer J Clin. 2021;71(1):47–77. doi: 10.3322/caac.21636
  16. Arnaud M, Loiselle M, Vaganay C, et al. Tumor Lysis Syndrome and AKI: Beyond Crystal Mechanisms. J Am Soc Nephrol. 2022;33(6):1154–1171. doi: 10.1681/ASN.2021070997
  17. Hu X, Wang G, Cheng H. Specific antigens in malignancy-associated membranous nephropathy. Front Med. 2024;11:1368457. doi: 10.3389/fmed.2024.1368457
  18. Baker LW, Jimenez-Lopez J, Geiger XJ, Aslam N. Malignancy-Associated Membranous Nephropathy with Positive Anti-PLA2R Autoantibodies: Coincidence or Connection. Case Rep Nephrol Dial. 2021;11(3):334–339. doi: 10.1159/000520399
  19. Hoxha E, Reinhard L, Stahl RAK. Membranous nephropathy: new pathogenic mechanisms and their clinical implications. Nat Rev Nephrol. 2022;18(7):466–478. doi: 10.1038/s41581-022-00564-1
  20. Xu Q, Li J, Yang Y, et al. Prevalence and prognosis of malignancy in THSD7A-associated membranous nephropathy: a systematic literature review and clinical case study. Ren Fail. 2024;46(1):2355353. doi: 10.1080/0886022X.2024.2355353
  21. Plaisier E, Ronco P. Screening for Cancer in Patients with Glomerular Diseases. Clin J Am Soc Nephrol. 2020;15(6):886–888. doi: 10.2215/CJN.09000819
  22. Sethi S, Debiec H, Madden B, et al. Semaphorin 3B-associated membranous nephropathy is a distinct type of disease predominantly present in pediatric patients. Kidney Int. 2020;98(5):1253–1264. doi: 10.1016/j.kint.2020.05.030
  23. Efe O, So PNH, Anandh U, et al. An Updated Review of Membranous Nephropathy. Indian J Nephrol. 2024;34(2):105–118. doi: 10.25259/ijn_317_23
  24. Fu N, Yuan S, Yang G, et al. Concurrent glomerular PCDH7 deposits in PLA2R-associated membranous nephropathy. CEN Case Rep. 2024;13(4):297–301. doi: 10.1007/s13730-023-00842-2
  25. Sethi S, Madden B, Debiec H, et al. Protocadherin 7-Associated Membranous Nephropathy. J Am Soc Nephrol. 2021;32(5):1249–1261. doi: 10.1681/ASN.2020081165
  26. Sethi S, Madden B, Casal Moura M, et al. Hematopoietic Stem Cell Transplant-Membranous Nephropathy Is Associated with Protocadherin FAT1. J Am Soc Nephrol. 2022;33(5):1033–1044. doi: 10.1681/ASN.2021111488
  27. Caza TN, Hassen SI, Kuperman M, et al. Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis. Kidney Int. 2021;100(1):171–181. doi: 10.1016/j.kint.2020.09.016
  28. Moroni G, Ponticelli C. Secondary Membranous Nephropathy. A Narrative Review. Front Med. 2020;7:611317. doi: 10.3389/fmed.2020.611317
  29. Dantas M, Silva LBB, Pontes BTM, et al. Membranous nephropathy. J Bras Nefrol. 2023;45(2):229–243. doi: 10.1590/2175-8239-JBN-2023-0046en
  30. Ronco P, Debiec H. Molecular Pathogenesis of Membranous Nephropathy. Annu Rev Pathol. 2020;15:287–313. doi: 10.1146/annurev-pathol-020117-043811
  31. Gu Y, Xu H, Tang D. Mechanisms of Primary Membranous Nephropathy. Biomolecules. 2021;11(4):513. doi: 10.3390/biom11040513
  32. McDonnell T, Wu HHL, Sinha S, Chinnadurai R. The Role of PLA2R in Primary Membranous Nephropathy: Do We Still Need a Kidney Biopsy? Genes. 2023;14(7):1343. doi: 10.3390/genes14071343
  33. Ragy O, Rautemaa V, Smith A, et al. Can use of the serum anti-PLA2R antibody negate the need for a renal biopsy in primary membranous nephropathy? PLoS One. 2023;18(2):e0281726. doi: 10.1371/journal.pone.0281726
  34. Kaya B, Paydas S, Balal M, et al. Renal expression of PLA2R, THSD7A, and IgG4 in patients with membranous nephropathy and correlation with clinical findings. Int J Clin Pract. 2021;75(4):e13855. doi: 10.1111/ijcp.13855
  35. Kukuy OL, Cohen R, Gilburd B, et al. The Prognostic Value of Anti-PLA2R Antibodies Levels in Primary Membranous Nephropathy. Int J Mol Sci. 2023;24(10):9051. doi: 10.3390/ijms24109051
  36. Mathew D, Gupta S, Ashman N. A case report of breast cancer and membranous nephropathy with positive anti phospholipase A2 receptor antibodies. BMC Nephrol. 2021;22(1):324. doi: 10.1186/s12882-021-02511-x
  37. Bobart SA, Han H, Tehranian S, et al. Noninvasive Diagnosis of PLA2R-Associated Membranous Nephropathy: A Validation Study. Clin J Am Soc Nephrol. 2021;16(12):1833–1839. doi: 10.2215/CJN.05480421
  38. Zhang C, Zhang M, Chen D, et al. Features of phospholipase A2 receptor and thrombospondin type-1 domain-containing 7A in malignancy-associated membranous nephropathy. J Clin Pathol. 2019;72(10):705–711. doi: 10.1136/jclinpath-2019-205852
  39. Juarez A, Galindo L, Ragunathan A, Gondal M. Thrombospondin Type 1 Domain-Containing 7A (THSD7A)-Associated Membranous Nephropathy Leading to Metastatic Neuroendocrine Carcinoma. Cureus. 2023;15(2):e35277. doi: 10.7759/cureus.35277
  40. Tesar V, Hruskova Z. Autoantibodies in the Diagnosis, Monitoring, and Treatment of Membranous Nephropathy. Front Immunol. 2021;12:593288. doi: 10.3389/fimmu.2021.593288
  41. Ren S, Wu C, Zhang Y, et al. An update on clinical significance of use of THSD7A in diagnosing idiopathic membranous nephropathy: a systematic review and meta-analysis of THSD7A in IMN. Ren Fail. 2018;40(1):306–313. doi: 10.1080/0886022X.2018.1456457
  42. Shen K, Chen B, Yang L, Gao W. Integrated analysis of single-cell and bulk RNA-sequencing data reveals the prognostic value and molecular function of THSD7A in gastric cancer. Aging. 2023;15(21):11940–11969. doi: 10.18632/aging.205158
  43. Sethi S, Debiec H, Madden B, et al. Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy. Kidney Int. 2020;97(1):163–174. doi: 10.1016/j.kint.2019.09.014
  44. Caza TN, Hassen SI, Dvanajscak Z, et al. NELL1 is a target antigen in malignancy-associated membranous nephropathy. Kidney Int. 2021;99(4):967–976. doi: 10.1016/j.kint.2020.07.039
  45. Wang G, Sun L, Dong H, et al. Neural Epidermal Growth Factor-Like 1 Protein-Positive Membranous Nephropathy in Chinese Patients. Clin J Am Soc Nephrol. 2021;16(5):727–735. doi: 10.2215/CJN.11860720
  46. Wang G, Hu X, Ye N, et al. Analysis of Clinicopathological Characteristics of Malignancy Patients with Membranous Nephropathy and Literature Review. Cancer Manag Res. 2024;16:677–689. doi: 10.2147/CMAR.S465211
  47. Qin HZ, Zhang MC, Le WB, et al. Combined Assessment of Phospholipase A2 Receptor Autoantibodies and Glomerular Deposits in Membranous Nephropathy. J Am Soc Nephrol. 2016;27(10):3195–3203. doi: 10.1681/ASN.2015080953
  48. Yasuda I, Tokuyama H, Hashiguchi A, et al. Malignancy-associated membranous nephropathy with PLA2R double-positive for glomeruli and carcinoma. CEN Case Rep. 2021;10(2):281–286. doi: 10.1007/s13730-020-00556-9
  49. Matsumoto A, Matsui I, Mano K, et al. Recurrent membranous nephropathy with a possible alteration in the etiology: a case report. BMC Nephrol. 2021;22(1):253. doi: 10.1186/s12882-021-02457-0
  50. Chen M, Zhang L, Zhong W, et al. Case Report: THSD7A-Positive Membranous Nephropathy Caused by Tislelizumab in a Lung Cancer Patient. Front Immunol. 2021;12:619147. doi: 10.3389/fimmu.2021.619147
  51. Ohtani H, Wakui H, Komatsuda A, et al. Distribution of glomerular IgG subclass deposits in malignancy-associated membranous nephropathy. Nephrol Dial Transplant. 2004;19(3):574–9. doi: 10.1093/ndt/gfg616
  52. Sugihara A, Ureshino H, Yamasaki M, et al. Type II Cryoglobulinemic Membranoproliferative Glomerulonephritis Caused by Mucosa-associated Lymphoid Tissue Lymphoma. Intern Med. 2023;62(13):1983–1988. doi: 10.2169/internalmedicine.0756-22
  53. Pattanashetti N, Kapatia G, Nada R, et al. Association of Membranoproliferative Glomerulonephritis with Papillary Carcinoma Thyroid. Indian J Nephrol. 2019;29(5):368–369. doi: 10.4103/ijn.IJN_215_18
  54. Kakeshita K, Yamazaki H, Imamura T, et al. Cryofibrinogen-associated glomerulonephritis accompanied by advanced gastric cancer. CEN Case Rep. 2021;10(4):527–536. doi: 10.1007/s13730-021-00602-0
  55. Severova G, Karanfilovski V, Naunovska L, et al. Association Between Membranoproliferative Glomerulonephritis and Colorectal Cancer – A Case Report. Pril (Makedon Akad Nauk Umet Odd Med Nauki). 2024;45(2):31–36. doi: 10.2478/prilozi-2024-0013
  56. Taira S, Kawagoe M, Anzai H, et al. Immunoglobulin A-dominant membranoproliferative glomerulonephritis-like pattern of injury as a possible paraneoplastic nephropathy in a breast cancer patient. CEN Case Rep. 2024. doi: 10.1007/s13730-024-00936-5
  57. Dabrowski D, Ozluk E, Barbeito S, Wei EX. Focal Segmental Glomerulosclerosis Preceding Type 2 Papillary Renal Cell Carcinoma. Case Rep Pathol. 2020;2020:8811905. doi: 10.1155/2020/8811905
  58. Zhou J, Yang Z, Yang CS, Lin H. Paraneoplastic focal segmental glomerulosclerosis associated with gastrointestinal stromal tumor with cutaneous metastasis: A case report. World J Clin Cases. 2021;9(27):8120–8126. doi: 10.12998/wjcc.v9.i27.8120
  59. Gupta P, Gupta RK. Pathology of Glomerular Diseases. Atlas of Clinical Case Studies. Springer; 2022. doi: 10.1007/978-981-19-1430-0
  60. Masuda S, Koizumi K, Moriya H, et al. Secondary Minimal Change Disease Due to Pancreatic Cancer Improved by Chemotherapy. Intern Med. 2021;60(2):251–257. doi: 10.2169/internalmedicine.5499-20
  61. Cai X, Wu Y, Wan Q, Zhang X. Minimal change disease associated with thyroid cancer: a case report. Front Med. 2023;10:1132259. doi: 10.3389/fmed.2023.1132259
  62. Nakano Y, Yoshida M, Muraki N, et al. Prostate Cancer Associated with Minimal Change Disease: A Case Report. Glomerular Dis. 2022;2(3):145–150. doi: 10.1159/000525040
  63. Mei Z, Li F, Chen R, et al. Causal associations between thyroid cancer and IgA nephropathy: a Mendelian randomization study. BMC Genomics. 2023;24(1):525. doi: 10.1186/s12864-023-09633-6

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© 2025 Эко-Вектор

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».