缺氧的生化因素及其在评估胎儿功能状态中的作用

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

妊娠和分娩期间胎儿缺氧的持续频率仍然是现代实用产科尚未解决的主要问题。通过及时监测胎儿功能状态的异常情况,在某些情况下,可以早期诊断病理过程。然而,现有的方法不允许识别胎儿的代偿性适应能力,也不能深入理解这种疾病的病理生理基础和引入治疗。该综述的目的是总结关于胎儿功能状态诊断的现有知识,分析评估胎儿在妊娠和分娩期间对应激因素的适应机制的可能方法。本文展示了诊断胎儿功能状态的生化方法的发展,并提出了评估胎儿在妊娠和分娩期间代偿能力的生化标记物。

作者简介

Olga V. Rozhdestvenskaya

Academician I.P. Pavlov First St. Petersburg State Medical University

Email: olgamish@inbox.ru
ORCID iD: 0000-0003-2280-9196
俄罗斯联邦, Saint Petersburg

Anna A. Kokaya

Maternity Hospital No. 16; State Research Institute of Applied Problems

Email: kann9998@yandex.ru
ORCID iD: 0000-0001-7324-5947

MD, Cand. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

Vitaly F. Bezhenar

Academician I.P. Pavlov First St. Petersburg State Medical University

编辑信件的主要联系方式.
Email: vitaliy@yandex.ru
ORCID iD: 0000-0002-7807-4929
SPIN 代码: 8626-7555
Scopus 作者 ID: 57191963583
Researcher ID: R-7055-2017

MD, Dr. Sci. (Med.), Professor

俄罗斯联邦, Saint Petersburg

参考

  1. Perepelica SA, Golubev AM, Moroz VV, et al. Causes of acute intranatal and postnatal hypoxia in neonatal infants. Obshchaya reanimatologiya. 2012;VIII(6):17–22. (In Russ.)
  2. Gunin AG, Milovanov MM, Denisova TG. Methods of fetal assessment in labors. Zdravoohranenie Chuvashii. 2014;3(3):9–48. (In Russ.)
  3. Kuznetsov PA, Kozlov PV. Fetal hypoxia and neonatal asphyxia. Lechebnoe delo. 2017;(4):9–15. (In Russ.)
  4. Malin GL, Morris RK, Khan KS. Strength of association between umbilical cord pH and perinatal and long term outcomes: Systematic review and meta-analysis. BMJ. 2010;340(7756):1121. doi: 10.1136/bmj.c1471
  5. Goodwin TM, Belai I, Hernandez P, et al. Asphyxial complications in the term newborn with severe umbilical acidemia. Am J Obstet Gynecol. 1992;167(6):1506−1512. doi: 10.1016/0002-9378(92)91728-s
  6. Rubak SL. Lactate measurement in umbilical cord blood in neonates. Ugeskr Laeger. 2010;172(1):364–368.
  7. East CE, Leader LR, Sheehan P, et al. Intrapartum fetal scalp lactate sampling for fetal assessment in the presence of a non-reassuring fetal heart rate trace. Cochrane Database Syst Rev. 2015;(5):CD006174. doi: 10.1002/14651858.CD006174.pub3
  8. Wiberg-Itzel E. Determination of pH or lactate in fetal scalp blood in management of intrapartum fetal distress: randomised controlled multicenter trial. Br Med J. 2008;336:1284–1287. doi: 10.1136/bmj.39553.406991.25
  9. Nordström L, Achanna S, Naka K, Arulkumaran S. Fetal and maternal lactate increase during active second stage of labour. BJOG. 2001;108(3):263–268. doi: 10.1136/10.1111/j.1471-0528.2001.00034.x
  10. Wiberg N, Källén K. Fetal scalp blood lactate during second stage of labor: determination of reference values and impact of obstetrical interventions. J Matern Fetal Neonatal Med. 2017;30(5):612–617. doi: 10.1080/14767058.2016.1181167
  11. Orsonneau J-L, Fraissinet F, Sébille-Rivain V, et al. Suitability of POC lactate methods for fetal and perinatal lactate testing: considerations for accuracy, specificity and decision making criteria. Clin Chem Lab Med. 2013;51(2):397–404. doi: 10.1515/cclm-2012-0201
  12. Wiberg N, Klausen TW, Tyrberg T, et al. Infant outcome at four years of age after intrapartum sampling of scalp blood lactate for fetal assessment. A cohort study. PLoS One. 2018;13(3):e0193887. doi: 10.1371/journal.pone.0193887
  13. Remneva OV, Fadeeva NI, Fil’chakova ON, et al. Intranatal fetal hypoxia: diagnostic possibilities, reserves reducing the incidence of cerebral disorders in full-term newborns. Rossijskij vestnik pediatrii. 2015;5(5):61–66. (In Russ.)
  14. Pogorelova TM, Gun’ko VO, Drukker NA, Linde VA. Proteins-markers of placental insufficiency. Biomedicinskaya himiya. 2010;56(5):616–620. (In Russ.)
  15. Loukovaara M, Teramo K, Alfthan H, et al. Amniotic fluid S100B protein and erythropoietin in pregnancies at risk for fetal hypoxia. Eur J Obstet Gynecol Reprod Biol. 2009;142(2):115–118. doi: 10.1016/j.ejogrb.2008.10.008
  16. Summanen M, Seikku L, Rahkonen P, et al. Comparison of umbilical serum copeptin relative to erythropoietin and S100B as asphyxia biomarkers at birth. Neonatology. 2017;112(1):60−66. doi: 10.1159/000456063
  17. Irmak K, Tüten N, Karaoglu G, et al. Evaluation of cord blood creatine kinase (CK), cardiac troponin T (cTnT), N-terminal-pro-B-type natriuretic peptide (NT-proBNP), and s100B levels in nonreassuring foetal heart rate. J Matern Fetal Neonatal Med. 2021;34(8):1249−1254. doi: 10.1080/14767058.2019.1632285
  18. Trevisanuto D, Picco G, Golin R, et al. Cardiac troponin I in asphyxiated neonates. Biol Neonate. 2006;89(3):190–193. doi: 10.1159/000089795
  19. Stefanović V, Loukovaara M. Amniotic fluid cardiac troponin T in pathological pregnancies with evidence of chronic fetal hypoxia. Croat Med J. 2005;46(5):801–807.
  20. Joseph S, Kumar S, Ahamed MZ, Lakshmi S. Cardiac troponin-T as a marker of myocardial dysfunction in term neonates with perinatal asphyxia. Indian J Pediatr. 2018;85(10):877–84. doi: 10.1007/s12098-018-2667-3
  21. Asrani P, Aly AM, Jiwani AK, et al. High-sensitivity troponin T in preterm infants with a hemodynamically significant patent ductus arteriosus. J Perinatol. 2018;38(11):1483−1489. doi: 10.1038/s41372-018-0192-x
  22. Whitehead C, Teh WT, Walker SP, et al. Quantifying circulating hypoxia-induced RNA transcripts in maternal blood to determine in utero fetal hypoxic status. BMC Med. 2013;11(1):1–12. doi: 10.1186/1741-7015-11-256
  23. Turrini I, Sorbi F, Ghizzoni V, et al. Severe fetal distress and placental damage might be associated with high troponin i (cTnI) levels in mothers. Am J Case Rep. 2018;19:194–198. doi: 10.12659/AJCR.906617
  24. Fleming SM, O’Gorman T, Finn J, et al. Cardiac troponin I in pre-eclampsia and gestational hypertension. BJOG. 2000;107(11):1417–1420. doi: 10.1111/j.1471-0528.2000.tb11658.x
  25. Joyal D, Leya F, Koh M, et al. Troponin I levels in patients with preeclampsia. Am J Med. 2007;120(9):819.e13−14. doi: 10.1016/j.amjmed.2006.05.068
  26. Whitehead CL, Teh WT, Walker SP, et al. Circulating MicroRNAs in maternal blood as potential biomarkers for fetal hypoxia in-utero. PLoS One. 2013;8(11):e78487. doi: 10.1371/journal.pone.0078487
  27. Human reproductive and prenatal genetics. Ed. by P.C.K. Leung, J. Qiao. London: Academic Press; 2019.
  28. Looney AM, Walsh BH, Moloney G, et al. Downregulation of umbilical cord blood levels of mir-374a in neonatal hypoxic ischemic encephalopathy. J Pediatr. 2015;167(2):269–273. doi: 10.1016/j.jpeds.2015.04.060
  29. Shi J-P, Li Y-W, Sang G-M, et al. Expression and significance of serum miRNA-21 expression in neonates with HIE. Pr Prev Med. 2018;25:655–658. doi: 10.3969/j.issn.1006-3110.2018.06.005
  30. Ponnusamy V, Yip PK. The role of microRNAs in newborn brain development and hypoxic ischaemic encephalopathy. Neuropharmacology. 2019;149:55–65. doi: 10.1016/j.neuropharm.2018.11.041
  31. Tissot van Patot MC, Murray AJ, Beckey V, et al. Human placental metabolic adaptation to chronic hypoxia, high altitude: hypoxic preconditioning. Am J Physiol Regul Integr Comp Physiol. 2010;298(1):R166−172. doi: 10.1152/ajpregu.00383.2009
  32. Nuñez A, Benavente I, Blanco D, et al. Oxidative stress in perinatal asphyxia and hypoxic-ischaemic encephalopathy. An Pediatr (Barc). 2018;88(4):228.e1−228.e9. doi: 10.1016/j.anpedi.2017.05.005
  33. Mitroshina EV, Abogessimengane BZH, Urazov MD, et al. Adaptive role of glial cell line-derived neurotrophic factorin cerebral ischemia. Sovremennye Tekhnologii V Medicine. 2017;9(1):68–76. (In Russ.)
  34. Turovsky EA, Zinchenko VP, Gaidin SG, Turovskaya MV. Calcium-binding proteins protect gabaergic neurons of the hippocampus from hypoxia and ischemia in vitro. Biol Membr. 2017;34(5):68–80. doi: 10.1134/S1990747818010105
  35. Coimbra-Costa D, Alva N, Duran M, et al. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox Biol. 2017;12:216–25. doi: 10.1016/j.redox.2017.02.014
  36. Grow J, Barks JD. Pathogenesis of hypoxic-ischemic cerebral injury in the term infant: current concepts. Clin Perinatol. 2002;29(4):585–602. doi: 10.1016/s0095-5108(02)00059-3
  37. Ostrova IV, Avrushchenko MS. Expression of brain-derived neurotrophic factor (BDNF) increases the resistance of neurons to death in the postresuscitation period. General Reanimatology. 2015;11(3):45−53. (In Russ.). doi: 10.15360/1813-9779-2015-3-45-53
  38. Ikeda T, Xia XY, Xia YX, et al. Glial cell line-derived neurotrophic factor protects against ischemia/hypoxia-induced brain injury in neonatal rat. Acta Neuropathol. 2000;100(2):161–7. doi: 10.1007/s004019900162
  39. Morozova AYu, Arutyunyan AV, Milyutina YuP, et al. The dynamics of the contents of neurotrophic factors in early ontogenyin the brain structures of rats subjected to prenatal hypoxia. Neurochemistry. 2018;35(3):256–263. (In Russ.). doi: 10.1134/S1027813318030081
  40. Morozova AYu, Arutyunyan AV, Milyutina Yu P, et al. Influence of prenatal hypoxia on the content of neuron specific enolasein the structures of the brain and blood serum of rats in early ontogeny. Neurochemistry. 2020;37(3):233–239. (In Russ.). doi: 10.31857/S1027813320030085
  41. Shchelchkova NA, Kokaya AA, Bezhenar’ VF, et al. The role of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor in chronic fetal oxygen deprivation. Sovremennye Tekhnologii V Medicine. 2020;12(1):25–33. (In Russ.). doi: 10.17691/stm2020.12.1.03+
  42. Cheng H, Fu Y-S, Guo J-W. Ability of GDNF to diminish free radical production leads to protection against kainate-induced excitotoxicity in hippocampus. Hippocampus. 2004;14(1):77–86. doi: 10.1002/hipo.10145
  43. Shang J, Deguchi K, Yamashita T, et al. Antiapoptotic and antiautophagic effects of glial cell line-derived neurotrophic factor and hepatocyte growth factor after transient middle cerebral artery occlusion in rats. J Neurosci Res. 2010;88(10):2197–2206. doi: 10.1002/jnr.22373
  44. Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium. 2010;47(2):122–129. doi: 10.1016/j.ceca.2010.01.003
  45. Ahn SY, Chang YS, Sung DK, et al. Pivotal role of brain-derived neurotrophic factor secreted by mesenchymal stem cells in severe intraventricular hemorrhage in newborn rats. Cell Transplant. 2017;26(1):145–156. doi: 10.3727/096368916X692861
  46. Feng N, Hao G, Yang F, et al. Transplantation of mesenchymal stem cells promotes the functional recovery of the central nervous system following cerebral ischemia by inhibiting myelin-associated inhibitor expression and neural apoptosis. Exp Ther Med. 2016;11(5):1595–600. doi: 10.3892/etm.2016.3089
  47. Mitkari B, Nitzsche F, Kerkelä E, et al. Human bone marrow mesenchymal stem/stromal cells produce efficient localization in the brain and enhanced angiogenesis after intra-arterial delivery in rats with cerebral ischemia, but this is not translated to behavioral recovery. Behav Brain Res. 2014;259:50–59. doi: 10.1016/j.bbr.2013.10.030
  48. Zhang R, Liu Y, Yan K, et al. Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation. 2013;10:106. doi: 10.1186/1742-2094-10-106
  49. Lee NM, Chae SA, Lee HJ. Effects of neural stem cell media on hypoxic injury in rat hippocampal slice cultures. Brain Res. 2017;1677:20–25. doi: 10.1016/j.brainres.2017.09.018
  50. Liu X, Wang X, Li A, Jiao X. Effect of mesenchymal stem cell transplantation on brain-derived neurotrophic factor expression in rats with Tourette syndrome. Exp Ther Med. 2016;11(4):1211–1216. doi: 10.3892/etm.2016.3059
  51. Zheng Z, Zhang L, Qu Y, et al. Mesenchymal stem cells protect against hypoxia-ischemia brain damage by enhancing autophagy through brain derived neurotrophic factor/mammalin target of rapamycin signaling pathway. Stem Cells. 2018;36(7):1109–1121. doi: 10.1002/stem.2808
  52. Sheng S, Huang J, Ren Y, et al. Neuroprotection against hypoxic/ischemic injury: δ-opioid receptors and BDNF-TrkB pathway. Cell Physiol Biochem. 2018;47(1):302−315. doi: 10.1159/000489808
  53. Vedunova МV, Sakharnova ТА, Mitroshina EV, et al. Antihypoxic and neuroprotective properties of BDNF and GDNF in vitro and in vivo under hypoxic conditions. Sovremennye Tehnologii v Medicine. 2014;6(4):38–47. (In Russ.)
  54. Duarte EP, Curcio M, Canzoniero LM, Duarte CB. Neuroprotection by GDNF in the ischemic brain. Growth Factors. 2012;30(4):242–257. doi: 10.3109/08977194.2012.691478
  55. Shishkina TV. Antigipoksicheskoe i nejroprotektornoe dejstvie glial’nogo nejrotroficheskogo faktora pri modelirovanii faktorov ishemii [dissertation abstract]. Saint Petersburg; 2017 [cited 23 Aug 2021]. Available from: http://www.dslib.net/fiziologia/antigipoksicheskoe-i-nejroprotektornoe-dejstvie-glialnogo-nejrotroficheskogo.html. (In Russ.)
  56. Shishkina TV, Mishchenko TA, Mitroshina EV, et al. Glial cell line-derived neurotrophic factor (GDNF) counteracts hypoxic damage to hippocampal neural network function in vitro. Brain Res. 2018;1678:310–321. doi: 10.1016/j.brainres.2017.10.023
  57. Shhelchkova NA, Kokaja AA, Vedunova MV. Rol’ nejrotroficheskih faktorov pri gipoksii novorozhdennyh. In: VI Baltijskij kongress po detskoj nevrologii: sbornik tezisov. Ed. by V.I. Guzeva. Saint Petersburg; 2016. P. 409–410. (In Russ.)
  58. Golosnaya GS, Kotij SA. Vaskuloendotelial’nyj faktor rosta (VEGF) i nejrotroficheskij faktor golovnogo mozga (BDNF) u novorozhdennyh s perinatal’nymi gipoksicheskimi porazheniyami CNS. Questions of modern pediatrics. 2006;5(1):149. (In Russ.)
  59. Morozova AY, Milyutina YP, Kovalchuk-Kovalevskaya OV, et al. Neuron-specific enolase and brain-derived neurotrophic factor levels in umbilical cord blood in full-term newborns with intrauterine growth retardation. Journal of obstetrics and women’s diseases. 2019;68(1):29−36. (In Russ.). doi: 10.17816/JOWD68129-36
  60. Vedunova MV, Mishchenko TA, Mitroshina EV, Mukhina IV. TrkB-mediated neuroprotective and antihypoxic properties of brain-derived neurotrophic factor. Oxid Med Cell Longev. 2015;2015:453901. doi: 10.1155/2015/453901

补充文件

附件文件
动作
1. JATS XML

版权所有 © Rozhdestvenskaya O.V., Kokaya A.A., Bezhenar V.F., 2021

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

##common.cookie##