血清素与健康足月新生儿的周期性睡眠组织
- 作者: Zvereva N.A.1, Milyutina Y.P.1, Evsyukova I.I.1
-
隶属关系:
- The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott
- 期: 卷 70, 编号 1 (2021)
- 页面: 69-76
- 栏目: Original study articles
- URL: https://journals.rcsi.science/jowd/article/view/64125
- DOI: https://doi.org/10.17816/JOWD64125
- ID: 64125
如何引用文章
详细
研究现实性。围产期病理引起的神经精神疾病的发展表明需要研究新生儿脑损伤的生化标志,以便及时预防不良后果。血清素在个体发育的早期阶段提供了神经元结构和大脑皮质网络的密集发育。它们参与睡眠的周期性组织的形成,这是大脑形态功能发育的一个微妙标准。
本工作目的为研究健康足月新生儿的血清素含量,并将其与睡眠电描记术的定量和定性特征进行比较。
材料与研究方法。以检查84名健康的新生儿,根据胎龄将其分为三组:第一组-37周(20人), 第二组-38周(24人),第三组-39-40周(40人)。用高效液相色谱-电化学检测法测定出生后第一天和第五天的脐带静脉富含血小板的血浆和由母婴静脉血制备的血小板悬浮液中的血清素含量。出生后7-12小时进行了睡眠电描记图的定量和定性分析。
研究成果。儿童脐带血中富含血小板的血浆中的血清素含量比母亲的静脉血中的血清素含量低2倍(0.379±0.116对0.756±0.200μM/L),但各项指标之间具有高度相关性(r = 0.8, p < 0.05)。在胎龄为39-40周时,富含血小板的血浆和静脉血小板中的血清素水平显着高于37周出生时的血清素。在后者中,血小板的血清素含量在出生后继续增加(第一天为0.539±0.149 nM/109 Tr,第五天为0.846±0.094 nM/109 Tr;p < 0.05),而在妊娠39-40周时出生的婴儿的指标没有变化(分别为0.797±0.190和0.749±0.142 nM/109 Tr)。在胎儿宫内发育和出生后最初几天的第37周至39周之间,富含血小板的血浆和婴儿血小板中的血清素含量增加,与正相睡眠阶段的表示增加有关。
结论。健康新生婴儿新生儿早期血清素含量变化和睡眠的周期性组织的一般规律性表明,有可能使用获得的血清素标准值作为大脑功能发育的生化指标。
作者简介
Natalia Zvereva
The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott
编辑信件的主要联系方式.
Email: tata-83@bk.ru
ORCID iD: 0000-0002-1220-1147
俄罗斯联邦, Saint Petersburg
Yulia Milyutina
The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott
Email: milyutina1010@mail.ru
ORCID iD: 0000-0003-1951-8312
SPIN 代码: 6449-5635
Scopus 作者 ID: 24824836300
PhD, Chairman of the Council of Young Scientists
俄罗斯联邦, Saint PetersburgInna Evsyukova
The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott
Email: eevs@yandex.ru
ORCID iD: 0000-0003-4456-2198
MD, PhD, DSci (Medicine), Professor
俄罗斯联邦, Saint Petersburg参考
- Huang L, Yu X, Keim S, et al. Maternal prepregnancy obesity and child neurodevelopment in the Collaborative Perinatal Project. Int J Epidemiol. 2014;43(3):783–792. doi: 10.1093/ije/dyu030
- Van Lieshout RJ, Voruganti LP. Diabetes mellitus during pregnancy and increased risk of schizophrenia in offspring: a review of the evidence and putative mechanisms. J Psychiatry Neurosci. 2008;33(5):395–404.
- Olfson M, Blanco C, Wang S, Laje G, Correll CU. National trends in the mental health care of children, adolescents, and adults by office-based physicians. JAMA Psychiatry. 2014;71(1):81–90. doi: 10.1001/jamapsychiatry.2013.3074
- Jenkins TA, Nguyen JC, Polglaze KE, Bertrand PP. Influence of tryptophan and serotonin on mood and cognition with a possible role of the Gut-Brain Axis. Nutrients. 2016;8(1):56. doi: 10.3390/nu8010056
- Edlow AG. Maternal obesity and neurodevelopmental and psychiatric disorders in offspring. Prenat Diagn. 2017;37(1):95–110. doi: 10.1002/pd.4932
- Kepser LJ, Homberg JR. The neurodevelopmental effects of serotonin: a behavioural perspective. Behav Brain Res. 2015;277:3–13. doi: 10.1016/j.bbr.2014.05.022
- Uzbekov MG, Murphy S, Rose SP. Ontogenesis of serotonin ‘receptors’ in different regions of rat brain. Brain Res. 1979;168(1):195–199. doi: 10.1016/0006-8993(79)90139-2
- Popova NK, Kulikov AV. Mnogoobrazie serotoninergicheskih receptorov kak osnova polifunkcional’nosti serotonina. Uspehi funkcional’noj nejrohimii: sbornik statej. Saint Petersburg; 2003. P. 56–73. (In Russ.)
- Evsyukova II. The cyclic organization of sleep in early ontogenesis in different conditions of intrauterine fetus development. Russian Journal of Physiology. 2013;9(2):166–174. (In Russ.)
- Oreland L, Hallman J. Blood platelets as a peripheral marker for the central serotonin system. Nordisk Psykiatrisk Tidsskrift. 1989;43(Suppl. 20):43–51. doi: 10.3109/08039488909100833
- Tu JB, Wong CY. Serotonin metabolism in normal and abnormal infants during the perinatal period. Biol Neonate. 1976;29(3–4):187–193. doi: 10.1159/000240863
- Berman JL, Justice P, Hsia DY. The metabolism of 5-hydroxy¬tryptamin (serotonin) in the newborn. J Pediatr. 1965;67(4):603–608. doi: 10.1016/s0022-3476(65)80431-0
- Hazra M, Benson S, Sandler M. Blood 5-hydroxytryptamine levels in the newborn. Arch Dis Child. 1965;40(213):513–515. doi: 10.1136/adc.40.213.513
- Anderson GM, Czarkowski K, Ravski N, Epperson CN. Platelet serotonin in newborns and infants: ontogeny, heritability, and effect of in utero exposure to selective serotonin reuptake inhibitors. Pediatr Res. 2004;56(3):418–422. doi: 10.1203/01.PDR.0000136278.23672.A0
- Flachaire E, Beney C, Berthier A, et al. Determination of reference values for serotonin concentration in platelets of healthy newborns, children, adults, and elderly subjects by HPLC with electrochemical detection. Clin Chem. 1990;36(12):2117–2120. doi: 10.1093/clinchem/36.12.2117
- Klimenko T, Kvaratsheliya T, Vodjanitskaya S. Changes in lungs and catecholamine status in the case of spinal intranatal trauma in newborns. Zdorovie rebenka. 2007;3(6):41–43. (In Russ.)
- Sheibak LN, Katkova EV. Serotonin and its derivatives in the umbilical cord blood serum of premature newborn infants. Rossijskij vestnik perinatologii i pediatrii. 2010;55(4):27–30. (In Russ.)
- De Villard R, Flachaire E, Laujin A, et al. Etude de la concentration en sérotonine plaquettaire chez les enfants de moins de 5 ans [Platelet serotonin concentration in children under 5 years of age]. Pediatrie. 1991;46(12):813–816.
- Mashige F, Matsushima Y, Kanazawa H, et al. Acidic catecholamine metabolites and 5-hydroxyindoleacetic acid in urine: the influence of diet. Ann Clin Biochem. 1996;33(Pt 1):43–49. doi: 10.1177/000456329603300106
- Field T, Diego M, Hernandez-Reif M, et al. Prenatal serotonin and neonatal outcome: brief report. Infant Behav Dev. 2008;31(2):316–320. doi: 10.1016/j.infbeh.2007.12.009
- Rosenfeld CS. Placental serotonin signaling, pregnancy outcomes, and regulation of fetal brain development. Biol Reprod. 2020;102(3):532–538. doi: 10.1093/biolre/ioz204
- Kliman HJ, Quaratella SB, Setaro AC, et al. Pathway of maternal serotonin to the human embryo and fetus. Endocrinology. 2018;159(4):1609–1629. doi: 10.1210/en.2017-03025
- Laurent L, Deroy K, St-Pierre J, Côté F, Sanderson JT, Vaillancourt C. Human placenta expresses both peripheral and neuronal isoform of tryptophan hydroxylase. Biochimie. 2017;140:159–165. doi: 10.1016/j.biochi.2017.07.008
- Ranzil S, Walker DW, Borg AJ, Wallace EM, Ebeling PR, Murthi P. The relationship between the placental serotonin pathway and fetal growth restriction. Biochimie. 2019;161:80–87. doi: 10.1016/j.biochi.2018.12.016
- Bonnin A, Goeden N, Chen K, et al. A transient placental source of serotonin for the fetal forebrain. Nature. 2011;472(7343):347–350. doi: 10.1038/nature09972
- Bonnin A, Levitt P. Fetal, maternal, and placental ¬sources of serotonin and new implications for developmental programming of the brain. Neuroscience. 2011;197:1–7. doi: 10.1016/j.neuroscience.2011.10.005
- Zhou FC, Sari Y, Zhang JK. Expression of serotonin transporter protein in developing rat brain. Brain Res Dev Brain Res. 2000;119(1):33–45. doi: 10.1016/s0165-3806(99)00152-2
- Nasyrova DI, Sapronova AY, Balbashev AV, et al. Development of central and peripheral serotonin-producing systems in rats in ontogenesis. J Evol Biochem Phys. 2009;45(1):78–85. doi: 10.1134/S0022093009010074
- Peirano P, Algarín C, Uauy R. Sleep-wake states and their ¬regulatory mechanisms throughout early human development. J Pediatr. 2003;143(4 Suppl.):S70-S79. doi: 10.1067/s0022-3476(03)00404-9
- Kovalson VM. Osnovi somnologii. Fiziologiya i neurochimiya zikla bodrstvovanie-son. Moscow; 2011. (In Russ.)
- Evsyukova II, Kondrat’eva MV. Characteristics of the cardiointervalogram in newborns during sleep. Human Physiology. 2005;31(2):199–203. (In Russ.)
- Poblano A, Haro R, Arteaga C. Neurophysiologic measurement of continuity in the sleep of fetuses during the last week of pregnancy and in newborns. Int J Biol Sci. 2007;4(1):23–28. doi: 10.7150/ijbs.4.23
补充文件
