Role of biologically active molecules in uterine contractile activity

封面


如何引用文章

全文:

详细

Hypothesis/aims of study. Myometrial relaxation and contraction require synchronous cellular interactions. At present, it has been established that the coordination of myometrial contractile activity is carried out by a conduction system constructed from gap junctions with intercellular channels. There are no clinical data on inhibiting (nitric oxide synthase) and activating (connexin-43) factors of uterine contractile activity in the myometrium during pregnancy and parturition in the published literature. This study was undertaken to measure the expression levels of nitric oxide synthase, adhesion molecules CD51, CD61, and connexin-43 in the myometrium during pregnancy and parturition; and to assess the role of inhibitory and activating factors in the development of uterine contractile activity.

Study design, materials and methods. An immunohistochemical study of myometrial biopsy specimens obtained from the lower uterus segment during cesarean section was performed in eight women with a full-term physiological pregnancy, in another eight individuals in the active phase of uncomplicated parturition, and in eight patients with uterine inertia. Integrins (CD51 and CD61 proteins) were used as markers of cell adhesion. Localization and the number of intercellular contacts were assessed by measuring the expression level of connexin-43, with the intensity of oxidative processes assessed by nitric oxide synthase activity.

Results. In the myometrium, in the active phase of physiological parturition, a three-fold increase in the expression of activating (CD51, CD61, and connexin-43) factors of uterine contractile activity and a five-fold decrease in that of inhibitory (nitric oxide synthase) ones occur compared to those in full-term physiological pregnancy.

Conclusion. In the pathogenesis of uterine inertia and resistance to labor induction, an important role is played by the decreased expression of adhesion molecules (CD51, CD61) and connexin-43 and the increased expression of nitric oxide synthase in the myometrium.

作者简介

Tatyana Kuzminykh

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

编辑信件的主要联系方式.
Email: 9260@mail.ru
Scopus 作者 ID: 56719818800
Researcher ID: U-8950-2017

MD, PhD, DSci (Medicine), the Head of the Delivery Department

俄罗斯联邦, Saint Petersburg

Vera Borisova

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: borisova.ver@gmail.com
SPIN 代码: 9499-9530

MD, PhD, Researcher. The Delivery Department

俄罗斯联邦, Saint Petersburg

Igor Nikolayenkov

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: nikolaenkov_igor@mail.ru

MD, PhD. The Delivery Department

俄罗斯联邦, Saint Petersburg

Georgy Kozonov

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: kozonovg@mail.ru

MD, PhD, Researcher. The Delivery Department

俄罗斯联邦, Saint Petersburg

Gulrukhsor Tolibova

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: gulyatolibova@yandex.ru
ORCID iD: 0000-0002-6216-6220
SPIN 代码: 7544-4825
Scopus 作者 ID: 23111355700
Researcher ID: Y-6671-2018

MD, PhD, Senior Researcher. The Laboratory of Cell Biology, the Department of Pathology

俄罗斯联邦, Saint Petersburg

参考

  1. Гаспарян Н.Д. Подготовка к родам мифегином и его влияние на состояние детей грудного возраста, лактационную и менструальную функцию женщин после родов // Российский вестник акушера-гинеколога. — 2001. — Т. 1. — № 4. — C. 34–37. [Gasparyan ND. Podgotovka k rodam mifeginom i ego vliyanie na sostoyanie deteygrudnogo vozrasta, laktatsionnuyu i menstrual’nuyu funktsiyu zhenshchin posle rodov. Rossiiskii vestnik akushera-ginekologa. 2001;1(4):34-37. (In Russ.)]
  2. Сергеев П.В., Карева Е.Н., Ткачева Н.Ю., Высоцкий М.М. Антипрогестины // Проблемы эндокринологии. — 1994. — Т. 40. — № 3. — C. 53–54. [Sergeev PV, Kareva EN, Tkacheva NY, Vysotskiy MM. Antiprogestiny. Problems of endocrinology. 1994;40(3):53-54. (In Russ.)]
  3. Lye SJ. The initiation and inhibition of labour: towards a molecular understanding. Semin Reprod Endocrinol. 1994;12(4):284-294.
  4. Sakai N, Tabb T, Garfield RE. Modulation of cell-to-cell coupling between myometrial cells of the human uterus during pregnancy. Am J Obstet Gynecol. 1992;167(2):472-480. https://doi.org/10.1016/S0002-9378(11)91432-X.
  5. Skinner KA, Challis JR. Changes in the synthesis and metabolism of prostaglandins by human fetal membranes and decidua at labor. Am J Obstet Gynecol. 1985;151(4):519-523. https://doi.org/10.1016/0002-9378(85)90281-9.
  6. Van Meir CA, Ramirez MM, Matthews SG. Chorionic prostaglandin catabolism is decreased in the lower uterine segment with term labor. Placenta. 1997;18(2):109-114.
  7. Lye SJ, Ou CW, Teoh TG. The molecular basis of labour and tocolysis. Fetal Matern Med Rev. 1998;10(3):121-136.
  8. Ермошенко Б.Г., Дорофеева И.В., Шубич М.Г. Структурно-функциональные основы координации сократительной деятельности миометрия в родах (проводящая система матки) // Российский вестник акушера-гинеколога. — 2003. — Т. 3. — № 5. — C. 21–27. [Ermoshenko BG, Dorofeeva IV, Shubich MG. Strukturno-funktsional’nye osnovy koordinatsii sokratitel’noy deyatel’nosti miometriya v rodakh (provodyashchaya sistema matki). Rossiiskii vestnik akushera-ginekologa. 2003;3(5):21-27. (In Russ.)]
  9. Garfield RE, Sims S, Daniel EE. Gap junctions: their presence and necessity in myometrium during parturition. Science. 1977;198(4320):958-960. https://doi.org/10.1126/science.929182.
  10. Risek B, Guthrie S, Kumar N, Gilula NB. Modulation of gap junction transcript and protein expression during pregnancy in the rat. J Cell Biol. 1990;110(2):269-282. https://doi.org/10.1083/jcb.110.2.269.
  11. Beyer EC, Kistler J, Paul DL, Goodenough DA. Antisera directed against connexin43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues. J Cell Biol. 1989;108(2):595-605. https://doi.org/10.1083/jcb.108.2.595.
  12. Hutchings G, Gevaert T, Deprest J, et al. Immunohistochemistry using an antibody to unphosphorylated connexin 43 to identify human myometrial interstitial cells. Reprod Biol Endocrinol. 2008;6:43. https://doi.org/10.1186/1477-7827-6-43.
  13. Коновалов П.В., Горшков А.Н., Овсянников Ф.А., Митрофанова Л.Б. Ремоделирование миометрия при соединительнотканной дисплазии у женщин со слабостью родовой деятельности // Трансляционная медицина. — 2015. — № 6. — С. 39–46. [Konovalov PV, Gorshkov AN, Ovsyannikov FA, Mitrofanova LB. Remodeling of the myometrium with connective tissue dysplasia in women with uterine inertia. Translational medicine. 2015;(6):39-46. (In Russ.)]
  14. Meyer RA, Laird DW, Revel JP, Johnson RG. Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J Cell Biol. 1992;119(1):179-189. https://doi.org/10.1083/jcb.119.1.179
  15. Mitchell JA, Lye SJ. Regulation of connexin43 expression by c-fos and c-jun in myometrial cells. Cell Commun Adhes. 2001;8(4-6):299-302. https://doi.org/10.3109/ 15419060109080741.
  16. Chwalisz K, Garfield RE. Regulation of the uterus and cervix during pregnancy and labor. Role of progesterone and nitric oxide. In: The uterus: endometrium and myometrium. New York: Academy of Sciences; 1997. P. 238-253.
  17. Challis JRG. Characteristics of parturition. In: Maternal-fetal medicine: principles and practice. Philadelphia: Saunders Co.; 1998. P. 484-497.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Kuzminykh T.U., Borisova V.Y., Nikolayenkov I.P., Kozonov G.R., Tolibova G.K., 2019

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

##common.cookie##