Pathophysiology of placenta and fetus in diabetes mellitus

Cover Page


Cite item

Full Text

Abstract

Currently, there is a steady increase in the incidence of diabetes mellitus (DM) in the global population, which causes an increase in maternal and perinatal mortality. Children born to mothers with DM have a high risk of not only congenital abnormalities, but also cardiovascular and metabolic disorders in later life. Fetal growth is determined by both the metabolic and nutritional status of the mother, and the placental nutrient transfer capacity. Pregnancy complicated by DM is associated not only with overgrowth of the fetus, but also with the excess deposition of metabolites in the placenta. The role of disorders of carbohydrate metabolism, obesity and other factors in relation to the function of the placenta and fetal growth remains not fully understood. This review provides an overview of the literature on the placental complex status in pregnancy complicated by obesity, as well as pre-gestational and gestational types of DM. The focus is on three key substrates in these conditions: glucose, lipids, and amino acids, and their influence on placental metabolic activity and on the fetus. Improved knowledge of morphology and understanding of changes in the function of the placenta that lead to abnormal growth of the fetus will allow for the development of new therapeutic approaches to improve the outcomes of pregnancy, maternal and child health.

About the authors

Roman V. Kapustin

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Author for correspondence.
Email: kapustin.roman@gmail.com
SPIN-code: 7300-6260

MD, PhD, Scientific Secretary

Russian Federation, Saint Petersburg

Alexandra R. Onopriychuk

Saint-Petersburg State University

Email: alexandraonopriychuk@gmail.com

MD, Resident Physician, Department of Obstetrics, Gynecology, and Reproductive Sciences, Medical Faculty

Russian Federation, Saint Petersburg

Olga N. Arzhanova

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: arjanova_olga@mail.ru

MD, PhD, DSci (Medicine), Professor, the Head of the Obstetric Department of Pregnancy Pathology I

Russian Federation, Saint Petersburg

Victoria O. Polyakova

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: vopol@yandex.ru

PhD, DSci (Biology), Professor of the Russian Academy of Sciences, Head of the Laboratory of Cell Biology, Department of Pathomorphology

Russian Federation, Saint Petersburg

Elena N. Alekseyenkova

Saint-Petersburg State University

Email: ealekseva@gmail.com
SPIN-code: 3976-2540

MD, Resident Physician, Department of Obstetrics, Gynecology, and Reproductive Sciences, Medical Faculty

Russian Federation, Saint Petersburg

References

  1. Benirschke K, Burton GJ, Baergen RN. Pathology of the Human Placenta. Berlin, Heidelberg: Springer; 2012. doi: 10.1007/978-3-642-23941-0.
  2. Fowden AL, Ward JW, Wooding FP, et al. Programming placental nutrient transport capacity. J Physiol. 2006;572(Pt 1):5-15. doi: 10.1113/jphysiol.2005.104141.
  3. Osmond DT, Nolan CJ, King RG, et al. Effects of gestational diabetes on human placental glucose uptake, transfer, and utilisation. Diabetologia. 2000;43(5):576-582. doi: 10.1007/s001250051346.
  4. Hay WW, Regnault TRH. Fetal Requirements and Placental Transfer of Nitrogenous Compounds. In: Fetal and Neonatal Physiology. Ed by R.A. Polin, W.W. Fox, S.H. Abman. 3rd ed. Philadelphia: Saunders; 2004. P. 509-527. doi: 10.1016/B978-0-7216-9654-6.50056-4.
  5. Osmond DTD, Nolan CJ, King RG, et al. Effects of gestational diabetes on human placental glucose uptake, transfer, and utilisation. Diabetologia. 2000;43(5):576-582. doi: 10.1007/s001250051346.
  6. Hay WW. Nutrient delivery and metabolism in the fetus. In: Textbook of diabetes and pregnancy. Ed by M. Hod, L.G. Jovanovic, G.C. Di Renzo, et al. 2nd ed. Boca Raton, Florida: CRC Press; 2008. P. 57-70.
  7. Hauguel-de Mouzon S. The GLUT3 Glucose Transporter Isoform Is Differentially Expressed within Human Placental Cell Types. J Clin Endocrinol Metab. 1997;82(8):2689-2694. doi: 10.1210/jc.82.8.2689.
  8. Gude NM, Stevenson JL, Rogers S, et al. GLUT12 Expression in Human Placenta in First Trimester and Term. Placenta. 2003;24(5):566-570. doi: 10.1053/plac.2002.0925.
  9. Hahn T, Barth S, Weiss U, et al. Sustained hyperglycemia in vitro down-regulates the GLUT1 glucose transport system of cultured human term placental trophoblast: a mechanism to protect fetal development? FASEB J. 1998;12(12):1221-1231. doi: 10.1096/fasebj.12.12.1221.
  10. Gordon MC, Zimmerman PD, Landon MB, et al. Insulin and glucose modulate glucose transporter messenger ribonucleic acid expression and glucose uptake in trophoblasts isolated from first-trimester chorionic villi. Am J Obstet Gynecol. 1995;173(4):1089-1097. doi: 10.1016/0002-9378(95)91332-7.
  11. Ehrhardt RA, Bell AW. Developmental increases in glucose transporter concentration in the sheep placenta. Am J Physiol. 1997;273(3 Pt 2):R1132-1141. doi: 10.1152/ajpregu.1997.273.3.R1132.
  12. Wooding FB, Fowden AL, Bell AW, et al. Localisation of glucose transport in the ruminant placenta: implications for sequential use of transporter isoforms. Placenta. 2005;26(8-9):626-640. doi: 10.1016/j.placenta.2004.09.013.
  13. Diamant YZ, Metzger BE, Freinkel N, Shafrir E. Placental lipid and glycogen content in human and experimental diabetes mellitus. Am J Obstet Gynecol. 1982;144(1):5-11. doi: 10.1016/0002-9378(82)90385-4.
  14. Copeland A, Hendrich C, Porterfield S. Distribution of Free Amino Acids in Streptozotocin-Induced Diabetic Pregnant Rats, Their Placentae and Fetuses. Horm Metab Res. 2008;22(02):65-70. doi: 10.1055/s-2007-1004853.
  15. Gaither K, Quraishi AN, Illsley NP. Diabetes alters the expression and activity of the human placental GLUT1 glucose transporter. J Clin Endocrinol Metab. 1999;84(2):695-701. doi: 10.1210/jcem.84.2.5438.
  16. Jansson T, Ekstrand Y, Wennergren M, Powell TL. Placental glucose transport in gestational diabetes mellitus. Am J Obstet Gynecol. 2001;184(2):111-116. doi: 10.1067/mob.2001.108075.
  17. Osmond DT, King RG, Brennecke SP, Gude NM. Placental glucose transport and utilisation is altered at term in insulin-treated, gestational-diabetic patients. Diabetologia. 2001;44(9):1133-1139. doi: 10.1007/s001250100609.
  18. Taricco E, Radaelli T, Rossi G, et al. Effects of gestational diabetes on fetal oxygen and glucose levels in vivo. BJOG. 2009;116(13):1729-1735. doi: 10.1111/j.1471-0528.2009.02341.x.
  19. Cetin I, de Santis MS, Taricco E, et al. Maternal and fetal amino acid concentrations in normal pregnancies and in pregnancies with gestational diabetes mellitus. Am J Obstet Gynecol. 2005;192(2):610-617. doi: 10.1016/j.ajog.2004.08.011.
  20. Regnault TRH, de Vrijer B, Battaglia FC. Transport and Metabolism of Amino Acids in Placenta. Endocrine. 2002;19(1):23-42. doi: 10.1385/endo:19:1:23.
  21. Ayuk PT, Sibley CP, Donnai P, et al. Development and polarization of cationic amino acid transporters and regulators in the human placenta. Am J Physiol Cell Physiol. 2000;278(6):C1162-1171. doi: 10.1152/ajpcell.2000.278.6.C1162.
  22. Mahendran D, Byrne S, Donnai P, et al. Na+ transport, H+ concentration gradient dissipation, and system A amino acid transporter activity in purified microvillous plasma membrane isolated from first-trimester human placenta: Comparison with the term microvillous membrane. Am J Obstet Gynecol. 1994;171(6):1534-1540. doi: 10.1016/0002-9378(94)90397-2.
  23. Jansson N, Pettersson J, Haafiz A, et al. Down-regulation of placental transport of amino acids precedes the development of intrauterine growth restriction in rats fed a low protein diet. J Physiol. 2006;576(Pt 3):935-946. doi: 10.1113/jphysiol.2006.116509.
  24. Smith CH. Incubation techniques and investigation of placental transport mechanisms in vitro. In: Placental transfer: Methods and Interpretations. Ed by M. Young, R.D.H. Boyd, L.D. Longo, G. Telegdy. London, Philadelphia, Toronto: W.B. Saunders Company Ltd; 1981. P. 163-168.
  25. Marconi AM, Battaglia FC, Meschia G, Sparks JW. A comparison of amino acid arteriovenous differences across the liver and placenta of the fetal lamb. Am J Physiol. 1989;257(6 Pt 1):E909-915. doi: 10.1152/ajpendo.1989.257.6.E909.
  26. Nandakumaran M, Al-Shammari M, Al-Saleh E. Maternal-fetal transport kinetics of L-Leucine in vitro in gestational diabetic pregnancies. Diabetes Metab. 2004;30(4):367-374. doi: 10.1016/s1262-3636(07)70130-1.
  27. Kalhan SC. Protein and nitrogen metabolism in gestational diabetes. Diabetes Care. 1998;21 Suppl 2:B75-78.
  28. Jansson T, Cetin I, Powell TL, et al. Placental transport and metabolism in fetal overgrowth - a workshop report. Placenta. 2006;27 Suppl A:S109-113. doi: 10.1016/j.placenta.2006.01.017.
  29. Gresham EL, James EJ, Raye JR, et al. Production and excretion of urea by the fetal lamb. Pediatrics. 1972;50(3):372-379.
  30. Sobrevia L, Jarvis SM, Yudilevich DL. Adenosine transport in cultured human umbilical vein endothelial cells is reduced in diabetes. Am J Physiol. 1994;267(1 Pt 1):C39-47. doi: 10.1152/ajpcell.1994.267.1.C39.
  31. Osses N, Sobrevia L, Cordova C, et al. Transport and metabolism of adenosine in diabetic human placenta. Reprod Fertil Dev. 1995;7(6):1499. doi: 10.1071/rd9951499.
  32. Wittmaack FM, Gafvels ME, Bronner M, et al. Localization and regulation of the human very low density lipoprotein/apolipoprotein-E receptor: trophoblast expression predicts a role for the receptor in placental lipid transport. Endocrinology. 1995;136(1):340-348. doi: 10.1210/endo.136.1.7828550.
  33. Wadsack C, Hammer A, Levak-Frank S, et al. Selective Cholesteryl Ester Uptake from High Density Lipoprotein by Human First Trimester and Term Villous Trophoblast Cells. Placenta. 2003;24(2-3):131-143. doi: 10.1053/plac.2002.0912.
  34. Thomas BA, Ghebremeskel K, Lowy C, et al. Plasma fatty acids of neonates born to mothers with and without gestational diabetes. Prostaglandins, Leukot Essent Fat Acids. 2005;72(5):335-341. doi: 10.1016/j.plefa.2005.01.001.
  35. Desoye G, Shafrir E, Hauguel-de Mouzon S. The placenta in diabetic pregnancy: Placental transfer of nutrients. In: Textbook of Diabetes and Pregnancy. Ed by M. Hod, L.G. Jovanovic, G.C. Di Renzo, et al. 2nd ed. Boca Raton, Florida: CRC Press; 2008. P. 67-76. doi: 10.3109/9781439802007-13.
  36. Hay WW. Placental function. In: Scientific Basis of Pediatric and Perinatal Medicine. Ed by P.D. Gluckman, M.A. Heymann. London: Edward Arnold; 1996. P. 213-227.
  37. Molina RD, Meschia G, Battaglia FC, Hay WW, Jr. Gestational maturation of placental glucose transfer capacity in sheep. Am J Physiol. 1991;261(3 Pt 2):R697-704. doi: 10.1152/ajpregu.1991.261.3.R697.
  38. DiGiacomo JE, Hay WW. Fetal glucose metabolism and oxygen consumption during sustained hypoglycemia. Metabolism. 1990;39(2):193-202. doi: 10.1016/0026-0495(90)90075-n.
  39. Das UG, Schroeder RE, Hay WW, Jr., Devaskar SU. Time-dependent and tissue-specific effects of circulating glucose on fetal ovine glucose transporters. Am J Physiol. 1999;276(3 Pt 2):R809-817. doi: 10.1152/ajpregu.1999.276.3.R809.
  40. Fowden AL, Hay WW, Jr. The effects of pancreatectomy on the rates of glucose utilization, oxidation and production in the sheep fetus. Q J Exp Physiol. 1988;73(6):973-984. doi: 10.1113/expphysiol.1988.sp003231.
  41. Anderson MS, He J, Flowers-Ziegler J, et al. Effects of selective hyperglycemia and hyperinsulinemia on glucose transporters in fetal ovine skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2001;281(4):R1256-1263. doi: 10.1152/ajpregu.2001.281.4.R1256.
  42. Anderson MS, Flowers-Ziegler J, Das UG, et al. Glucose transporter protein responses to selective hyperglycemia or hyperinsulinemia in fetal sheep. Am J Physiol Regul Integr Comp Physiol. 2001;281(5):R1545-1552. doi: 10.1152/ajpregu.2001.281.5.R1545.
  43. Aldoretta PW, Carver TD, Hay WW, Jr. Maturation of glucose-stimulated insulin secretion in fetal sheep. Biol Neonate. 1998;73(6):375-386. doi: 10.1159/000014000.
  44. Carver TD, Anderson SM, Aldoretta PA, et al. Glucose suppression of insulin secretion in chronically hyperglycemic fetal sheep. Pediatr Res. 1995;38(5):754-762. doi: 10.1203/00006450-199511000-00020.
  45. Carver TD, Anderson SM, Aldoretta PW, Hay WW, Jr. Effect of low-level basal plus marked “pulsatileˮ hyperglycemia on insulin secretion in fetal sheep. Am J Physiol. 1996;271(5 Pt 1):E865-871. doi: 10.1152/ajpendo.1996.271.5.E865.
  46. Catalano P, Buchanan TA. Metabolic changes during normal and diabetic pregnancies. In: Diabetes mellitus in women: adolescence through pregnancy and menopause. Ed by E.A. Reece, D.R. Coustan, S.G. Gabbe, F.C. Battaglia. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2004. P. 129-146.
  47. Liechty EA, Boyle DW, Moorehead H, et al. Effect of hyperinsulinemia on ovine fetal leucine kinetics during prolonged maternal fasting. Am J Physiol. 1992;263(4 Pt 1):E696-702. doi: 10.1152/ajpendo.1992.263.4.E696.
  48. Oliver MH, Harding JE, Breier BH, et al. Glucose but not a mixed amino acid infusion regulates plasma insulin-like growth factor-I concentrations in fetal sheep. Pediatr Res. 1993;34(1):62-65. doi: 10.1203/00006450-199307000-00015.
  49. Han VKM, Fowden A. Paracrine regulation of fetal growth. In: Early fetal growth and development. Ed by R.H.T. Ward, S.K. Smith, D. Donnai. London: RCOG Press; 1994. P. 275-291.
  50. Stephens E, Thureen PJ, Goalstone ML, et al. Fetal hyperinsulinemia increases farnesylation of p21 Ras in fetal tissues. Am J Physiol Endocrinol Metab. 2001;281(2):E217-223. doi: 10.1152/ajpendo.2001.281.2.E217.
  51. Kennaugh JM, Bell AW, Teng C, et al. Ontogenetic changes in the rates of protein synthesis and leucine oxidation during fetal life. Pediatr Res. 1987;22(6):688-692. doi: 10.1203/00006450-198712000-00015.
  52. Wilkening RB, Boyle DW, Teng C, et al. Amino acid uptake by the fetal ovine hindlimb under normal and euglycemic hyperinsulinemic states. Am J Physiol. 1994;266(1 Pt 1):E72-78. doi: 10.1152/ajpendo.1994.266.1.E72.
  53. Magnusson-Olsson AL, Hamark B, Ericsson A, et al. Gestational and hormonal regulation of human placental lipoprotein lipase. J Lipid Res. 2006;47(11):2551-2561. doi: 10.1194/jlr.M600098-JLR200.
  54. Magnusson AL, Waterman IJ, Wennergren M, et al. Triglyceride Hydrolase Activities and Expression of Fatty Acid Binding Proteins in the Human Placenta in Pregnancies Complicated by Intrauterine Growth Restriction and Diabetes. J Clin Endocrinol Metab. 2004;89(9):4607-4614. doi: 10.1210/jc.2003-032234.

Copyright (c) 2018 Kapustin R.V., Onopriychuk A.R., Arzhanova O.N., Polyakova V.O., Alekseyenkova E.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies