Современные технологии производства вакцин против инфекционных болезней птиц

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Вакцинация — один из самых эффективных и универсальных способов профилактики инфекционных заболеваний. Развитие современных технологий позволяет получать вакцины с заданными свойствами. В обзоре представлены данные о разных типах вакцин, используемых для профилактики инфекционных заболеваний птиц. Рассмотрены достоинства и недостатки традиционных аттенуированных и инактивированных вакцин, а также рекомбинантных вакцин — векторных, субъединичных, на основе вирусоподобных частиц и ДНК-вакцин. Обсуждаются возможности бактериальных, дрожжевых, бакуловирусных и растительных систем экспрессии гетерологичных генов для продукции рекомбинантных вакцин.

Об авторах

Андрей Михайлович Румянцев

Санкт-Петербургский государственный университет

Email: rumyantsev-am@mail.ru
ORCID iD: 0000-0002-1744-3890
SPIN-код: 9335-1184
Scopus Author ID: 55370658800

канд. биол. наук

Россия, 199034, Санкт-Петербург, Университетская наб., д. 7/9

Антон Витальевич Сидорин

Санкт-Петербургский государственный университет

Email: spacerocketpilot@gmail.com

магистр кафедры

Россия, 199034, Санкт-Петербург, Университетская наб., д. 7/9

Елена Викторовна Самбук

Санкт-Петербургский государственный университет

Email: esambuk@mail.ru
ORCID iD: 0000-0003-0837-0498
SPIN-код: 8281-8020
Scopus Author ID: 6603061322
ResearcherId: H-6895-2013

д-р биол. наук

Россия, 199034, Санкт-Петербург, Университетская наб., д. 7/9

Марина Владимировна Падкина

Санкт-Петербургский государственный университет

Автор, ответственный за переписку.
Email: mpadkina@mail.ru
ORCID iD: 0000-0002-4051-4837
SPIN-код: 7709-0449
Scopus Author ID: 6602596755

д-р биол. наук

Россия, 199034, Санкт-Петербург, Университетская наб., д. 7/9

Список литературы

  1. Marangon S., Busani L. The use of vaccination in poultry production // Rev Sci Tech. 2007. Vol. 26. No. 1. P. 265–274. doi: 10.20506/rst.26.1.1742
  2. Hon C.C., Lam T.T., Yip C.W., et al. Phylogenetic evidence for homologous recombination within the family Birnaviridae // J Gen Virol. 2008. Vol. 89. No. 12. P. 3156–3164. doi: 10.1099/vir.0.2008/004101-0
  3. Berg T.P. Acute infectious bursal disease in poultry: a review // Avian Pathol. 2000. Vol. 29. No. 3. P. 175–194. doi: 10.1080/03079450050045431
  4. Muller H., Mundt E., Eterradossi N., et al. Current status of vaccines against infectious bursal disease // Avian Pathol. 2012. Vol. 41. No. 2. P. 133–139. doi: 10.1080/03079457.2012.661403
  5. Miller P.J., Koch G. Newcastle disease. 13th ed. Swayne D.E., Glisson J.R., McDougald L.R., et al editors. Diseases of Poultry, Hoboken (NJ), USA: Wiley-Blackwell, 2013. 89–138 p.
  6. Alexander D.J., Aldous E.W., Fuller C.M. The long view: a selective review of 40 years of Newcastle disease research // Avian Pathol. 2012. Vol. 41. No. 4. P. 329–335. doi: 10.1080/03079457.2012.697991
  7. Bello M.B., Yusoff K., Ideris A., et al. Exploring the prospects of engineered Newcastle Disease Virus in modern vaccinology // Viruses. 2020. Vol. 12. No. 4. P. 451. doi: 10.3390/v12040451
  8. Rosario K., Breitbart M., Harrach B., et al. Revisiting the taxonomy of the family Circoviridae: establishment of the genus Cyclovirus and removal of the genus Gyrovirus // Arch Virol. 2017. Vol. 162. No. 5. P. 1447–1463. doi: 10.1007/s00705-017-3247-y
  9. Fatoba A.J., Adeleke M.A. Chicken anemia virus: A deadly pathogen of poultry // Acta Virol. 2019. Vol. 63. No. 1. P. 19–25. doi: 10.4149/av_2019_110
  10. Zelník V. Marek’s disease and new approaches to its control // Acta Virol. 1995. Vol. 39. No. 1. P. 53–63.
  11. Venugopal K. Marek’s disease: an update on oncogenic mechanisms and control // Res Vet Sci. 2000. Vol. 69. No. 1. P. 17–23. doi: 10.1053/rvsc.2000.0396
  12. Witter R.L., Calnek B.W., Buscaglia C., et al. Classification of Marek’s disease viruses according to pathotype: philosophy and methodology // Avian Pathol. 2005. Vol. 34. No. 2. P. 75–90. doi: 10.1080/03079450500059255
  13. Nair V. Spotlight on avian pathology: Marek’s disease // Avian Pathol. 2018. Vol. 47. No. 5. P. 440–442. doi: 10.1080/03079457.2018.1484073
  14. Biggs P.M., Nair V. The long view: 40 years of Marek’s disease research and avian pathology // Avian Pathol. 2012. Vol. 41. No. 1. P. 3–9. doi: 10.1080/03079457.2011.646238
  15. McGeoch D.J., Dolan A., Ralph A.C. Toward a comprehensive phylogeny for mammalian and avian herpesviruses // J Virol. 2000. Vol. 74. No. 22. P. 10401–10406. doi: 10.1128/jvi.74.22.10401-10406.2000
  16. Bagust T.J., Jones R.C., Guy J.S. Avian infectious laryngotracheitis // Rev Sci Tech. 2000. Vol. 19. No. 2. P. 483–492. doi: 10.20506/rst.19.2.1229
  17. Ou S.C., Giambrone J.J. Infectious laryngotracheitis virus in chickens // World J Virol. 2012. Vol. 1. No. 5. P. 142–149. doi: 10.5501/wjv.v1.i5.142
  18. Sharma J.M. Hemorrhagic enteritis of turkeys // Vet Immunol Immunopathol. 1991. Vol. 30. No. 1. P. 67–71. doi: 10.1016/0165-2427(91)90009-2
  19. Rautenschlein S., Sharma J.M. Immunopathogenesis of haemorrhagic enteritis virus (HEV) in turkeys // Dev Comp Immunol. 2000. Vol. 24. No. 2–3. P. 237–246. doi: 10.1016/s0145-305x(99)00075-0
  20. Suttie A., Deng Y.M., Greenhill A.R., et al. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses // Virus Genes. 2019. Vol. 55. No. 6. P. 739–768. doi: 10.1007/s11262-019-01700-z
  21. Rautenschlein S., Kraemer Ch., Vanmarcke J., et al. Protective efficacy of intermediate and intermediate plus infectious bursal disease virus (IBDV) vaccines against very virulent IBDV in commercial broilers // Avian Dis. 2005. Vol. 49. No. 2. P. 231–237. doi: 10.1637/7310-112204R
  22. Dey S., Pathak D.C., Ramamurthy N., et al. Infectious bursal disease virus in chickens: prevalence, impact, and management strategies // Vet Med (Auckl). 2019. Vol. 10. P. 85–97. doi: 10.2147/VMRR.S185159
  23. Ike A.C., Ononugbo C.M., Obi O.J., et al. Towards improved use of vaccination in the control of infectious bronchitis and Newcastle disease in poultry: understanding the immunological mechanisms // Vaccines (Basel). 2021. Vol. 9. No. 1. P. 20. doi: 10.3390/vaccines9010020
  24. Kapczynski D.R., Afonso C.L., Miller P.J. Immune responses of poultry to Newcastle disease virus // Dev Comp Immunol. 2013. Vol. 41. No. 3. P. 447–453. doi: 10.1016/j.dci.2013.04.012
  25. Dimitrov K.M., Afonso C.L., Yu Q., et al. Newcastle disease vaccines – A solved problem or a continuous challenge? // Vet Microbiol. 2017. Vol. 206. P. 126–136. doi: 10.1016/j.vetmic.2016.12.019
  26. Todd D., Creelan J.L., Connor T.J., et al. Investigation of the unstable attenuation exhibited by a chicken anaemia virus isolate // Avian Pathol. 2003. Vol. 32. No. 4. P. 375–382. doi: 10.1080/037945031000121121
  27. Biggs P.M. Marek’s disease — the disease and its prevention by vaccination // Br J Cancer Suppl. 1975. Vol. 2. P. 152–155.
  28. Thilakarathne D.S., Coppo M.J.C., Hartley C.A., et al. Attenuated infectious laryngotracheitis virus vaccines differ in their capacity to establish latency in the trigeminal ganglia of specific pathogen free chickens following eye drop inoculation // PLoS One. 2019. Vol. 14. No. 3. ID e0213866. doi: 10.1371/journal.pone.0213866
  29. Sharma J.M. Response of specific-pathogen-free turkeys to vaccines derived from marble spleen disease virus and hemorrhagic enteritis virus // Avian Dis. 1994. Vol. 38. No. 3. P. 523–530. doi: 10.2307/1592074
  30. Alexander D.J. An overview of the epidemiology of avian influenza // Vaccine. 2007. Vol. 25. No. 30. P. 5637–5644. doi: 10.1016/j.vaccine.2006.10.051
  31. Костина Л.В., Забережный А.Д., Гребенникова Т.В., и др. Вакцины против гриппа птиц в птицеводстве // Вопросы вирусологии. 2017. Т. 62, № 2. С. 53–60. doi: 10.18821/0507-4088-2017-62-2-53-60
  32. Ellis T.M., Leung C.Y., Chow M.K., et al. Vaccination of chickens against H5N1 avian influenza in the face of an outbreak interrupts virus transmission // Avian Pathol. 2004. Vol. 33. No. 4. P. 405–412. doi: 10.1080/03079450410001724012
  33. Гоголадзе Д.Т., Джавадов Э.Д., Серова Н.Ю. Импортозамещение ветеринарных вакцин и тест-систем в современном промышленном птицеводстве России // Птица и птицепродукты. 2016. № 3. С. 41–43.
  34. Ellis R.W. Development of combination vaccines // Vaccine. 1999. Vol. 17. No. 13–14. P. 1635–1642. doi: 10.1016/s0264-410x(98)00424-1
  35. Uzzau S., Marogna G., Leori G.S., et al. Virulence attenuation and live vaccine potential of aroA, crp cdt cya, and plasmid-cured mutants of Salmonella enterica serovar abortusovis in mice and sheep // Infect Immun. 2005. Vol. 73. No. 7. P. 4302–4308. doi: 10.1128/IAI.73.7.4302-4308.2005
  36. Fuchs W., Veits J., Helferich D., et al. Molecular biology of avian infectious laryngotracheitis virus // Vet Res. 2007. Vol. 38. No. 2. P. 261–279. doi: 10.1051/vetres:200657
  37. Nogales A., Martínez-Sobrido L. Reverse genetics approaches for the development of influenza vaccines // Int J Mol Sci. 2016. Vol. 18. No. 1. P. 20. doi: 10.3390/ijms18010020
  38. Romanutti C., Keller L., Zanetti F.A. Current status of virus-vectored vaccines against pathogens that affect poultry // Vaccine. 2020. Vol. 38. No. 45. P. 6990–7001. doi: 10.1016/j.vaccine.2020.09.013
  39. Lin I.Y., Van T.T., Smooker P.M. Live-attenuated bacterial vectors: tools for vaccine and therapeutic agent delivery // Vaccines (Basel). 2015. Vol. 3. No. 4. P. 940–872. doi: 10.3390/vaccines3040940
  40. Jackwood M.W. Current and future recombinant viral vaccines for poultry // Adv Vet Med. 1999. Vol. 41. P. 517–522. doi: 10.1016/s0065-3519(99)80038-x
  41. Afonso C.L., Tulman E.R., Lu Z., et al. The genome of fowlpox virus // J Virol. 2000. Vol. 74. No. 8. P. 3815–3831. doi: 10.1128/jvi.74.8.3815-3831.2000
  42. Butter C., Sturman T.D., Baaten B.J., et al. Protection from infectious bursal disease virus (IBDV)-induced immunosuppression by immunization with a fowlpox recombinant containing IBDV-VP2 // Avian Pathol. 2003. Vol. 32. No. 6. P. 597–604. doi: 10.1080/03079450310001610686
  43. Yanagida N., Ogawa R., Li Y., et al. Recombinant fowlpox viruses expressing the glycoprotein B homolog and the pp38 gene of Marek’s disease virus // J Virol. 1992. Vol. 66. No. 3. P. 1402–1408. doi: 10.1128/JVI.66.3.1402-1408.1992
  44. Jackwood M., Hickle L., Kapil S., et al. Vaccine development using recombinant DNA technology // CAST (Council agricult sci technol). 2008. Vol. 38. P. 12.
  45. Qiao C.L., Yu K.Z., Jiang Y.P., et al. Protection of chickens against highly lethal H5N1 and H7N1 avian influenza viruses with a recombinant fowlpox virus co-expressing H5 haemagglutinin and N1 neuraminidase genes // Avian Pathol. 2003. Vol. 32. No. 1. P. 25–32. doi: 10.1080/0307945021000070688
  46. Cardona C.J., Reed W.M., Witter R.L., et al. Protection of turkeys from hemorrhagic enteritis with a recombinant fowl poxvirus expressing the native hexon of hemorrhagic enteritis virus // Avian Dis. 1999. Vol. 43. No. 2. P. 234–244. doi: 10.2307/1592613
  47. Cardona C.J., Nazerian K., Reed W.M., et al. Characterization of a recombinant fowlpox virus expressing the native hexon of hemorrhagic enteritis virus // Virus Genes. 2001. Vol. 22. No. 3. P. 353–361. doi: 10.1023/a:1011134811271
  48. Bublot M., Pritchard N., Le Gros F.X., et al. Use of a vectored vaccine against infectious bursal disease of chickens in the face of high-titred maternally derived antibody // J Comp Pathol. 2007. Vol. 137. No. 1. P. S81–84. doi: 10.1016/j.jcpa.2007.04.017
  49. Li K., Liu Y., Zhang Y., et al. Protective efficacy of a novel recombinant Marek’s disease virus vector vaccine against infectious bursal disease in chickens with or without maternal antibodies // Vet Immunol Immunopathol. 2017. Vol. 186. P. 55–59. doi: 10.1016/j.vetimm.2017.02.003
  50. García M. Current and future vaccines and vaccination strategies against infectious laryngotracheitis (ILT) respiratory disease of poultry // Vet Microbiol. 2017. Vol. 206. P. 157–162. doi: 10.1016/j.vetmic.2016.12.023
  51. Palya V., Kiss I., Tatar-Kis T., et al. Advancement in vaccination against Newcastle disease: recombinant HVT NDV provides high clinical protection and reduces challenge virus shedding with the absence of vaccine reactions // Avian Dis. 2012. Vol. 56. No. 2. P. 282–287. doi: 10.1637/9935-091511-Reg.1
  52. Huang Z., Elankumaran S., Panda A., et al. Recombinant Newcastle disease virus as a vaccine vector // Poult Sci. 2003. Vol. 82. No. 6. P. 899–906. doi: 10.1093/ps/82.6.899
  53. Dhama K., Gowthaman V., Karthik K., et al. Haemorrhagic enteritis of turkeys – current knowledge // Vet Q. 2017. Vol. 37. No. 1. P. 31–42. doi: 10.1080/01652176.2016.1277281
  54. Gupta R.K. Aluminum compounds as vaccine adjuvants // Adv Drug Deliv Rev. 1998. Vol. 32. No. 3. P. 155–172. doi: 10.1016/s0169-409x(98)00008-8
  55. Spickler A.R., Roth J.A. Adjuvants in veterinary vaccines: modes of action and adverse effects // J Vet Intern Med. 2003. Vol. 17. No. 3. P. 273–281. doi: 10.1111/j.1939-1676.2003.tb02448.x
  56. Asif M., Jenkins K.A., Hilton L.S., et al. Cytokines as adjuvants for avian vaccines // Immunol Cell Biol. 2004. Vol. 82. No. 6. P. 638–643. doi: 10.1111/j.1440-1711.2004.01295.x
  57. Wang B.Z., Quan F.S., Kang S.M., et al. Incorporation of membrane-anchored flagellin into influenza virus-like particles enhances the breadth of immune responses // J Virol. 2008. Vol. 82. No. 23. P. 11813–11823. doi: 10.1128/JVI.01076-08
  58. Gupta S.K., Bajwa P., Deb R., et al. Flagellin a toll-like receptor 5 agonist as an adjuvant in chicken vaccines // Clin Vaccine Immunol. 2014. Vol. 21. No. 3. P. 261–270. doi: 10.1128/CVI.00669-13
  59. Dalloul R.A., Lillehoj H.S., Okamura M., et al. In vivo effects of CpG oligodeoxynucleotide on Eimeria infection in chickens // Avian Dis. 2004. Vol. 48. No. 4. P. 783–790. doi: 10.1637/7154-010704R
  60. Rong J., Jiang T., Cheng T., et al. Large-scale manufacture and use of recombinant VP2 vaccine against infectious bursal disease in chickens // Vaccine. 2007. Vol. 25. No. 46. P. 7900–7908. doi: 10.1016/j.vaccine.2007.09.006
  61. Omar A.R., Kim C.L., Bejo M.H., et al. Efficacy of VP2 protein expressed in E. coli for protection against highly virulent infectious bursal disease virus // J Vet Sci. 2006. Vol. 7. No. 3. P. 241–247. doi: 10.4142/jvs.2006.7.3.241
  62. Pitcovski J., Fingerut E., Gallili G., et al. A subunit vaccine against hemorrhagic enteritis adenovirus // Vaccine. 2005. Vol. 23. No. 38. P. 4697–4702. doi: 10.1016/j.vaccine.2005.03.049
  63. Sączynska V., Romanik-Chruscielewska A., Florys K., et al. Prime-boost vaccination with a novel hemagglutinin protein produced in bacteria induces neutralizing antibody responses against H5-subtype influenza viruses in commercial chickens // Front Immunol. 2019. Vol. 10. P. 2006. doi: 10.3389/fimmu.2019.02006
  64. Shen S.Y., Chang W.C., Yi H.H., et al. Development of a subunit vaccine containing recombinant chicken anemia virus VP1 and pigeon IFN-γ // Vet Immunol Immunopathol. 2015. Vol. 167. No. 3–4. P. 200–204. doi: 10.1016/j.vetimm.2015.08.002
  65. Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems // Appl Microbiol Biotechnol. 2006. Vol. 72. No. 2. P. 211–222. doi: 10.1007/s00253-006-0465-8
  66. Demain A.L., Vaishnav P. Production of recombinant proteins by microbes and higher organisms // Biotechnol Adv. 2009. Vol. 27. No. 3. P. 297–306. doi: 10.1016/j.biotechadv.2009.01.008
  67. Белжеларская С.Н. Бакуловирусные системы экспрессии рекомбинантных белков в клетках насекомых и млекопитающих // Молекулярная биология. 2011. Т. 45, № 1. С. 142–159.
  68. Vakharia V.N., Snyder D.B., He J., et al. Infectious bursal disease virus structural proteins expressed in a baculovirus recombinant confer protection in chickens // J Gen Virol. 1993. 74. No. 6. P. 1201–1206. doi: 10.1099/0022-1317-74-6-1201
  69. Liu Y., Wei Y., Wu X., et al. Preparation of ChIL-2 and IBDV VP2 fusion protein by baculovirus expression system // Cell Mol Immunol. 2005. Vol. 2. No. 3. P. 231–235.
  70. Tseng T.-Y., Liu Y.-C., Hsu Y.-C., et al. Preparation of chicken anemia virus (CAV) virus-like particles and chicken Interleukin-12 for vaccine development using a baculovirus expression system // Pathogens. 2019. Vol. 8. No. 4. P. 262. doi: 10.3390/pathogens8040262
  71. Eckart M.R., Bussineau C.M. Quality and authenticity of heterologous proteins synthesized in yeast // Curr Opin Biotechnol. 1996. Vol. 7. No. 5. P. 525–530. doi: 10.1016/s0958-1669(96)80056-5
  72. Berlec A., Strukelj B. Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells // J Ind Microbiol Biotechnol. 2013. Vol. 40. No. 3–4. P. 257–274. doi: 10.1007/s10295-013-1235-0
  73. Celik E., Calık P. Production of recombinant proteins by yeast cells // Biotechnol Adv. 2012. Vol. 30. No. 5. P. 1108–1118. doi: 10.1016/j.biotechadv.2011.09.011
  74. Ahmad M., Hirz M., Pichler H., et al. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production // Appl Microbiol Biotechnol. 2014. Vol. 98. No. 12. P. 5301–5317. doi: 10.1007/s00253-014-5732-5
  75. Dey S., Upadhyay C., Mohan C.M., et al. Formation of subviral particles of the capsid protein VP2 of infectious bursal disease virus and its application in serological diagnosis // J Virol Methods. 2009. Vol. 157. No. 1. P. 84–89. doi: 10.1016/j.jviromet.2008.11.020
  76. Pitcovski J., Gutter B., Gallili G., et al. Development and large-scale use of recombinant VP2 vaccine for the prevention of infectious bursal disease of chickens // Vaccine. 2003. Vol. 21. No. 32. P. 4736–4743. doi: 10.1016/s0264-410x(03)00525-5
  77. Khulape S.A., Maity H.K., Pathak D.C., et al. Antigenic validation of recombinant hemagglutinin-neuraminidase protein of Newcastle disease virus expressed in Saccharomyces cerevisiae // Acta Virol. 2015. Vol. 59. No. 3. P. 240–246. doi: 10.4149/av_2015_03_240
  78. Subathra M., Santhakumar P., Narasu M.L., et al. Evaluation of antibody response in mice against avian influenza A (H5N1) strain neuraminidase expressed in yeast Pichia pastoris // J Biosci. 2014. Vol. 39. No. 3. P. 443–451. doi: 10.1007/s12038-014-9422-3
  79. Rage E., Marusic C., Lico C., et al. Current state-of-the-art in the use of plants for the production of recombinant vaccines against infectious bursal disease virus // Appl Microbiol Biotechnol. 2020. Vol. 104. No. 6. P. 2287–2296. doi: 10.1007/s00253-020-10397-2
  80. Saint-Jore-Dupas C., Faye L., Gomord V. From planta to pharma with glycosylation in the toolbox // Trends Biotechnol. 2007. Vol. 25. No. 7. P. 317–323. doi: 10.1016/j.tibtech.2007.04.008
  81. Rage E., Drissi Touzani C., Marusic C., et al. Functional characterization of a plant-produced infectious bursal disease virus antigen fused to the constant region of avian IgY immunoglobulins // Appl Microbiol Biotechnol. 2019. Vol. 103. No. 18. P. 7491–7504. doi: 10.1007/s00253-019-09992-9
  82. Wu H., Singh N.K., Locy R.D., et al. Expression of immunogenic VP2 protein of infectious bursal disease virus in Arabidopsis thaliana // Biotechnol Lett. 2004. Vol. 26. No. 10. P. 787–792. doi: 10.1023/b: bile.0000025878.30350.d5
  83. Bae J.L., Lee J.G., Kang T.J., et al. Induction of antigen-specific systemic and mucosal immune responses by feeding animals transgenic plants expressing the antigen // Vaccine. 2003. Vol. 21. No. 25–26. P. 4052–4058. doi: 10.1016/s0264-410x(03)00360-8
  84. Streatfield S.J. Delivery of plant-derived vaccines // Expert Opin Drug Deliv. 2005. Vol. 2. No. 4. P. 719–728. doi: 10.1517/17425247.2.4.719
  85. Partidos C.D. Peptide mimotopes as candidate vaccines // Curr Opin Mol Ther. 2000. Vol. 2. No. 1. P. 74–79.
  86. Wang Y.S., Fan H.J., Li Y., et al. Development of a multi-mimotope peptide as a vaccine immunogen for infectious bursal disease virus // Vaccine. 2007. Vol. 25. No. 22. P. 4447–4455. doi: 10.1016/j.vaccine.2007.03.018
  87. Noad R., Roy P. Virus-like particles as immunogens // Trends Microbiol. 2003. Vol. 11. No. 9. P. 438–444. doi: 10.1016/s0966-842x(03)00208-7
  88. Crisci E., Barcena J., Montoya M. Virus-like particle-based vaccines for animal viral infections // Inmunologia. 2013. Vol. 32. No. 3. P. 102–116. doi: 10.1016/j.inmuno.2012.08.002
  89. Rogel A., Benvenisti L., Sela I., et al. Vaccination with E. coli recombinant empty viral particles of infectious bursal disease virus (IBDV) confer protection // Virus Genes. 2003. Vol. 27. No. 2. P. 169–175. doi: 10.1023/a:1025780611356
  90. Martinez-Torrecuadrada J.L., Saubi N., Pages-Mante A., et al. Structure-dependent efficacy of infectious bursal disease virus (IBDV) recombinant vaccines // Vaccine. 2003. Vol. 21. No. 23. P. 3342–3350. doi: 10.1016/s0264-410x(02)00804-6.117
  91. Taghavian O., Spiegel H., Hauck R., et al. Protective oral vaccination against infectious bursal disease virus using the major viral antigenic protein VP2 produced in Pichia pastoris // PLoS One. 2013. Vol. 8. No. 12. ID e83210. doi: 10.1371/journal.pone.0083210
  92. Lee H.J., Kim J.Y., Kye S.J., et al. Efficient self-assembly and protective efficacy of infectious bursal disease virus-like particles by a recombinant baculovirus co-expressing precursor polyprotein and VP4 // Virol J. 2015. Vol. 12. ID177. doi: 10.1186/s12985-015-0403-4
  93. Tseng T.Y., Liu Y.C., Hsu Y.C., et al. Preparation of chicken anemia virus (CAV) virus-like particles and chicken interleukin-12 for vaccine development using a baculovirus expression system // Pathogens. 2019. Vol. 8. No. 4. ID262. doi: 10.3390/pathogens8040262
  94. Lee D.H., Park J.K., Song C.S. Progress and hurdles in the development of influenza virus-like particle vaccines for veterinary use // Clin Exp Vaccine Res. 2014. Vol. 3. No. 2. P. 133–139. doi: 10.7774/cevr.2014.3.2.133
  95. McGinnes L.W., Pantua H., Laliberte J.P., et al. Assembly and biological and immunological properties of Newcastle disease virus-like particles // J Virol. 2010. Vol. 84. No. 9. P. 4513–4523. doi: 10.1128/JVI.01931-09
  96. D’Aoust M.A., Lavoie P.O., Couture M.M.-J., et al. Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice // Plant Biotechnol J. 2008. Vol. 6. No. 9. P. 930–940. doi: 10.1111/j.1467-7652.2008.00384.x
  97. Marusic C., Drissi Touzani C., Bortolami A., et al. The expression in plants of an engineered VP2 protein of infectious bursal disease virus induces formation of structurally heterogeneous particles that protect from a very virulent viral strain // PLoS One. 2021. Vol. 16. No. 2. ID e0247134. doi: 10.1371/journal.pone.0247134
  98. Noh J.Y., Park J.K., Lee D.H., et al. Chimeric bivalent virus-like particle vaccine for H5N1 HPAI and ND confers protection against a lethal challenge in chickens and allows a strategy of differentiating infected from vaccinated animals (DIVA) // PLoS One. 2016. Vol. 11. No. 9. ID e0162946. doi: 10.1371/journal.pone.0162946
  99. Xu X.G., Tong D.W., Wang Z.S., et al. Baculovirus virions displaying infectious bursal disease virus VP2 protein protect chickens against infectious bursal disease virus infection // Avian Dis. 2011. Vol. 55. No. 2. P. 223–229. doi: 10.1637/9597-111210-Reg.1
  100. Wetzel D., Rolf T., Suckow M., et al. Establishment of a yeast-based VLP platform for antigen presentation // Microb Cell Fact. 2018. Vol. 17. No. 1. P. 17. doi: 10.1186/s12934-018-0868-0
  101. Wang Y.S., Ouyang W., Liu X.J., et al. Virus-like particles of hepatitis B virus core protein containing five mimotopes of infectious bursal disease virus (IBDV) protect chickens against IBDV // Vaccine. 2012. Vol. 30. No. 12. P. 2125–2130. doi: 10.1016/j.vaccine.2012.01.040
  102. Chen T.H., Chen T.H., Hu C.C., et al. Induction of protective immunity in chickens immunized with plant-made chimeric Bamboo mosaic virus particles expressing very virulent Infectious bursal disease virus antigen // Virus Res. 2012. Vol. 166. No. 1–2. P. 109–115. doi: 10.1016/j.virusres.2012.02.021
  103. Wolff J.A., Malone R.W., Williams P., et al. Direct gene transfer into mouse muscle in vivo // Science. 1990. Vol. 247. No. 1. P. 1465–1458. doi: 10.1126/science.1690918
  104. Oshop G.L., Elankumaran S., Heckert R.A. DNA vaccination in the avian // Vet Immunol Immunopathol. 2002. Vol. 89. No. 1–2. P. 1–12. doi: 10.1016/s0165-2427(02)00189-7
  105. Robinson H.L., Hunt L.A., Webster R.G. Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA // Vaccine. 1993. Vol. 11. No. 9. P. 957–960. doi: 10.1016/0264-410x(93)90385-b
  106. Meunier M., Chemaly M., Dory D. DNA vaccination of poultry: The current status in 2015 // Vaccine. 2016. Vol. 34. No. 2. P. 202–211. doi: 10.1016/j.vaccine.2015.11.043
  107. Jazayeri S.D., Poh C.L. Recent advances in delivery of veterinary DNA vaccines against avian pathogens // Vet Res. 2019. Vol. 50. No. 1. P. 78. doi: 10.1186/s13567-019-0698-z
  108. Mahmood M.S., Siddique M., Hussain I., et al. Protection capability of recombinant plasmid DNA vaccine containing VP2 gene of very virulent infectious bursal disease virus in chickens adjuvanted with CpG oligodeoxynucleotide // Vaccine. 2006. Vol. 24. No. 22. P. 4838–4846. doi: 10.1016/j.vaccine.2006.03.016
  109. Firouzamandi M., Moeini H., Hosseini S.D., et al. Preparation, characterization, and in ovo vaccination of dextran-spermine nanoparticle DNA vaccine coexpressing the fusion and hemagglutinin genes against Newcastle disease // Int J Nanomedicine. 2016. Vol. 11. P. 259–267. doi: 10.2147/IJN.S92225
  110. Moeini H., Omar A.R., Rahim R.A., et al. Development of a DNA vaccine against chicken anemia virus by using a bicistronic vector expressing VP1 and VP2 proteins of CAV // Comp Immunol Microbiol Infect Dis. 2011. Vol. 34. No. 3. P. 227–236. doi: 10.1016/j.cimid.2010.11.006
  111. Moeini H., Omar A.R., Rahim R.A., et al. Improving the potency of DNA vaccine against chicken anemia virus (CAV) by fusing VP1 protein of CAV to Marek’s Disease Virus (MDV) type-1 VP22 protein // Virol J. 2011. Vol. 8. P. 119. doi: 10.1186/1743-422X-8-119
  112. Rasoli M., Omar A.R., Aini I., et al. Fusion of HSP70 gene of Mycobacterium tuberculosis to hemagglutinin (H5) gene of avian influenza virus in DNA vaccine enhances its potency // Acta Virol. 2010. Vol. 54. No. 1. P. 33–39. doi: 10.4149/av_2010_01_33
  113. Chen H.Y., Zhao L., Wei Z.Y., et al. Enhancement of the immunogenicity of an infectious laryngotracheitis virus DNA vaccine by a bicistronic plasmid encoding glycoprotein B and interleukin-18 // Antiviral Res. 2010. Vol. 87. No. 2. P. 235–241. doi: 10.1016/j.antiviral.2010.05.009
  114. Sun J.H., Yan Y.X., Jiang J., et al. DNA immunization against very virulent infectious bursal disease virus with VP2-4-3 gene and chicken IL-6 gene // J Vet Med B Infect Dis Vet Public Health. 2005. Vol. 52. No. 1. P. 1–7. doi: 10.1111/j.1439-0450.2004.00813.x
  115. Zhang H.H., Yang X.M., Xie Q.M., et al. The potent adjuvant effects of chicken beta-defensin-1 when genetically fused with infectious bursal disease virus VP2 gene // Vet Immunol Immunopathol. 2010. Vol. 136. No. 1–2. P. 92–97. doi: 10.1016/j.vetimm.2010.02.018
  116. Deb R., Dey S., Madhan Mohan C., et al. Development and evaluation of a Salmonella typhimurium flagellin based chimeric DNA vaccine against infectious bursal disease of poultry // Res Vet Sci. 2015. Vol. 102. P. 7–14. doi: 10.1016/j.rvsc.2015.07.004
  117. Maity H.K., Dey S., Mohan C.M., et al. Protective efficacy of a DNA vaccine construct encoding the VP2 gene of infectious bursal disease and a truncated HSP70 of Mycobacterium tuberculosis in chickens // Vaccine. 2015. Vol. 33. No. 8. P. 1033–1039. doi: 10.1016/j.vaccine.2015.01.006
  118. Huo S., Zhang J., Fan J., et al. Co-expression of chicken IL-2 and IL-7 enhances the immunogenicity and protective efficacy of a VP2-Expressing DNA vaccine against IBDV in chickens // Viruses. 2019. Vol. 11. No. 5. P. 476. doi: 10.3390/v11050476
  119. Sawant P.M., Verma P.C., Subudhi P.K., et al. Immunomodulation of bivalent Newcastle disease DNA vaccine induced immune response by co-delivery of chicken IFN-γ and IL-4 genes // Vet Immunol Immunopathol. 2011. Vol. 144. No. 1–2. P. 36–44. doi: 10.1016/j.vetimm.2011.07.006
  120. Oshop G.L., Elankumaran S., Vakharia V.N., et al. In ovo delivery of DNA to the avian embryo // Vaccine. 2003. Vol. 21. No. 11–12. P. 1275–1281. doi: 10.1016/s0264-410x(02)00624-2
  121. Negash T., Liman M., Rautenschlein S. Mucosal application of cationic poly(D, L-lactide-co-glycolide) microparticles as carriers of DNA vaccine and adjuvants to protect chickens against infectious bursal disease // Vaccine. 2013. Vol. 31. No. 36. P. 3656–3662. doi: 10.1016/j.vaccine.2013.06.011
  122. Zhao K., Zhang Y., Zhang X., et al. Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in chitosan nanoparticles // Int J Nanomedicine. 2014. Vol. 9. No. 1. P. 389–402. doi: 10.2147/IJN.S54226
  123. Jazayeri S.D., Ideris A., Zakaria Z., et al. Cytotoxicity and immunological responses following oral vaccination of nanoencapsulated avian influenza virus H5 DNA vaccine with green synthesis silver nanoparticles // J Control Release. 2012. Vol. 161. No. 1. P. 116–123. doi: 10.1016/j.jconrel.2012.04.015
  124. Darji A., Guzman C.A., Gerstel B., et al. Oral somatic transgene vaccination using attenuated S. typhimurium // Cell. 1997. Vol. 91. No. 6. P. 765–775. doi: 10.1016/s0092-8674(00)80465-1
  125. Gentschev I., Dietrich G., Spreng S., et al. Recombinant attenuated bacteria for the delivery of subunit vaccines // Vaccine. 2001. Vol. 19. No. 17–19. P. 2621–2628. doi: 10.1016/s0264-410x(00)00502-8
  126. Li L., Fang W., Li J., et al. Oral DNA vaccination with the polyprotein gene of infectious bursal disease virus (IBDV) delivered by the attenuated Salmonella elicits protective immune responses in chickens // Vaccine. 2006. Vol. 24. No. 33–34. P. 5919–5927. doi: 10.1016/j.vaccine.2006.04.057
  127. Jazayeri S.D., Ideris A., Zakaria Z., et al. Improved immune responses against avian influenza virus following oral vaccination of chickens with HA DNA vaccine using attenuated Salmonella typhimurium as carrier // Comp Immunol Microbiol Infect Dis. 2012. Vol. 35. No. 5. P. 417–427. doi: 10.1016/j.cimid.2012.03.007
  128. Mahmood M.S., Hussain I., Siddique M., et al. DNA vaccination with VP2 gene of very virulent infectious bursal disease virus (vvIBDV) delivered by transgenic E. coli DH5alpha given orally confers protective immune responses in chickens // Vaccine. 2007. Vol. 25. No. 44. P. 7629–7635. doi: 10.1016/j.vaccine.2007.08.059
  129. Rutherford N., Mourez M. Surface display of proteins by gram-negative bacterial autotransporters // Microb Cell Fact. 2006. Vol. 5. P. 22. doi: 10.1186/1475-2859-5-22
  130. Thole J.E., van Dalen P.J., Havenith C.E., et al. Live bacterial delivery systems for development of mucosal vaccines // Curr Opin Mol Ther. 2000. Vol. 2. No. 1. P. 94–99.
  131. Dieye Y., Hoekman A.J., Clier F., et al. Ability of Lactococcus lactis to export viral capsid antigens: a crucial step for development of live vaccines // Appl Environ Microbiol. 2003. Vol. 69. No. 12. P. 7281–7288. doi: 10.1128/aem.69.12.7281-7288.2003
  132. Maqsood I., Shi W., Wang L. et al. Immunogenicity and protective efficacy of orally administered recombinant Lactobacillus plantarum expressing VP2 protein against IBDV in chicken. J. Appl. Microbiol. 2018; 125(6): 1670–1681. doi: 10.1111/jam.14073
  133. Wang Z., Yu Q., Fu J., et al. Immune responses of chickens inoculated with recombinant Lactobacillus expressing the haemagglutinin of the avian influenza virus // J Appl Microbiol. 2013. Vol. 115. No. 6. P. 1269–1277. doi: 10.1111/jam.12325
  134. Lei H., Jin S., Karlsson E., et al. Yeast surface-displayed H5N1 avian influenza vaccines // J Immunol Res. 2016. Vol. 2016. ID4131324. doi: 10.1155/2016/4131324
  135. Kumar R., Kumar P. Yeast-based vaccines: New perspective in vaccine development and application // FEMS Yeast Res. 2019. Vol. 19. No. 2. ID foz007. doi: 10.1093/femsyr/foz007
  136. Cranenburgh R. DNA Vaccine Delivery // BioPharm International. 2011. Vol. 2011. No. 7.
  137. Zhou L., Zheng S.J. The Roles of MicroRNAs (miRNAs) in avian response to viral infection and pathogenesis of avian immunosuppressive diseases // Int J Mol Sci. 2019. Vol. 20. No. 21. ID 5454. doi: 10.3390/ijms20215454
  138. Li J., Zheng S.J. Role of MicroRNAs in host defense against infectious bursal disease virus (IBDV) infection: A Hidden front line // Viruses. 2020. Vol. 12. No. 5. ID 543. doi: 10.3390/v12050543
  139. Vilela J., Rohaim M.A., Munir M. Application of CRISPR/Cas9 in understanding avian viruses and developing poultry vaccines // Front Cell Infect Microbiol. 2020. Vol. 10. ID 581504. doi: 10.3389/fcimb.2020.581504

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Эко-Вектор", 2021


 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах