АДАПТИВНЫЙ МУТАГЕНЕЗ У ДРОЖЖЕЙ SACCHAROMYCES CEREVISIAE


Цитировать

Полный текст

Аннотация

Природа мутаций у микроорганизмов остается дискуссионной темой в течение длительного времени.  Обсуждается две теории: теория о случайной природе  спонтанного мутагенеза и теория адаптивного мутагенеза. В данном случае под «случайным  мутагенезом» понимают процесс возникновения мутаций в делящихся клетках до воздействия на них селективного агента. Термин «адаптивный мутагенез» означает, что мутации возникают именно в тех селективных условиях, в которых они были отобраны,  вне зависимости от того возникают ли параллельно нейтральные мутации.  Адаптивный мутагенез происходит  в неделящихся или медленно растущих клетках. В течение последних 20 лет были получены доказательства того, что и случайные и адаптивные мутации возникают у бактерий и дрожжей. Микроорганизмы в природе не делятся или делятся очень медленно по причине ограничивающих факторов среды. Однако благодаря адаптивным мутациям микроорганизмы могут получить селективное преимущество и стимулировать эволюцию популяции. В данной работе мы обсудим фундаментальные аспекты адаптивного мутагенеза у дрожжей Saccharomyces cerevisiae. В начале мы сосредоточимся на природе адаптивного мутагенеза, затем рассмотрим экспериментальные системы, созданные для доказательства или опровержения адаптивного мутагенеза. Здесь мы кратко обсудили результаты, полученные в области адаптвного мутагенеза, уделив особое внимание генетическим и молекулярным механизмам этого процесса.

Об авторах

Нора Бабудри

Университет Перуджи, Перуджи, Италия

Email: babudri@upihg.it

Анджела Лукачионни

Университет Перуджи, Перуджи, Италия

Алессандро Ачилли

Университет Павии, Павия, Италия

Email: achilli@unipg.it.

Список литературы

  1. Hayes W. The Genetics of Bacteria and their Viruses. -Blackwell Scientific Publications, Oxford. -1964. -Vol. 177. -198 p.
  2. Luria S.E. and Delbrück M. Mutations of bacteria from virus sensitivity to virus resistance//Genetics. -1943. -Vol. 28. -P. 491-511.
  3. Cairns J., Overbaugh J. and Miller S. The origin of mutants//Nature. -1988. -Vol. 335. -P. 142-145.
  4. Ryan F.J. Spontaneous mutations in non-dividing bacteria//Genetics. -1955. -Vol. 40. -P. 726-738.
  5. Shapiro J.A. Observations on the formation of clones containing araB-lacZ fusions//Mol. Gen. Genet. -1984. -Vol. 194. -P. 79-90.
  6. Cairns J. and Foster P.L. Adaptive reversion of a frameshift mutation in Escherichia coli//Genetics. -1991. -Vol. 28. -P. 695-701.
  7. Steele D.F. and Jinks-Robertson S. An examination of adaptive reversion in Saccharomyces cerevisiae//Genetics. -1992. -Vol. 132. -P. 9-21.
  8. Hall B.G. Spontaneous point mutations that occur more often when advantageous than when neutral//Genetics. -1990. -Vol. 126. -P. 5-16.
  9. Hall B.G. Selection induced mutations occur in yeast//Proc. Natl. Acad. Sci. USA. -1992. -Vol. 89. -P. 4300-4303.
  10. Achilli A., Pavlov Y.I., Matmati N. et al., The exceptionally high rate of spontaneous mutations in the polymerase delta proof-reading exonuclease deficient S.cerevisiae strains starved for adenina//BMC Genetics. -2004. -Vol. 5. -P. 34-44.
  11. Marini A., Morpurgo G. and Matmati N. Starvation in yeast increases non-adaptive mutation//Curr. Genet. -1999. -Vol. 35. -P. 77-81.
  12. McPhee D. Is there evidence for directed mutation in bacteria?//Mutagenesis. -1993. -Vol. 8. -P. 3-5.
  13. Foster P.L. Adaptive mutation in Escherichia coli//J. Bacteriol. -2004. -Vol. 186. -P. 4846-4852.
  14. Foster P.L. Stress responses and genetic variation in bacteria//Mut. Res. -2005. -Vol. 569. -P. 3-11.
  15. Rosenberg S.M. Evolving responsively: adaptive mutation//Nat. Rev. Gene. -2001. -Vol. 2. -P. 504-515.
  16. Roth J.R., Kugeleberg E., Reams A.B. et al. Origins of Mutations Under Selection: The Adaptive Mutation Controversy//Annu. Rev. Microbiol. -2006. -Vol. 60. -P. 477-501.
  17. Foster P.L. Nonadaptive mutations occur on the F' episome during adaptive mutations conditions in Escherichia coli//J. Bacteriol. -1997. -Vol. 174. -P. 1711-1716.
  18. Foster P.L. and Cairns J. Adaptive mutation of a lacZ amber allele//Genetics. -1998. -Vol. 150. -P. 1329-1330.
  19. Wright B.E. Stress-directed adaptive mutations and evolution//Mol. Microbiol. -2004. -Vol. 52. -P. 643-650.
  20. Maki H. Origins of spontaneous mutations: specificity and directionality of base-substitutions, frameshift and sequencesubstitution mutagenesis//Annu. Rev. Genet. -2002. -Vol. 36. -P. 279-303.
  21. Barnes D.E. and Lindahl T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells//Annu. Rev. Genet. -2004. -Vol. 38. -P. 445-476.
  22. Bridges B.A. Mutation in resting cells: the role of endogenous DNA damage//Cancer Surv. -1996. -Vol. 2. -P. 155-167.
  23. Heidenreich E. and Wintersberger U. Starvation for specific aminoacid induces high frequencies of rho-mutants in Saccharomyces cerevisiae//Curr. Genet. -1997. -Vol. 31. -P. 408-413.
  24. Prakash S. and Prakash.L. Nucleotide excision repair in yeast//Mut. Res. -2000. -Vol. 451. -P. 13-24.
  25. Abdulovic A., Kim N. and Jinks-Robertson S. Mutagenesis and the three R's in yeast//DNA repair. -2006. -Vol. 5. -P. 409-421.
  26. Heidenreich E., Holzmann V. and Eisler H. Polymerase zeta dependency of increased adaptive mutation frequencies in nucleotide excision repair-deficient yeast strains//DNA Repair. -2004. -Vol. 3. -P. 395-402.
  27. Storchová Z., Rohas A.P., Janderová B., et al. The involvement of the RAD6 gene in starvation-induced reverse mutations in Saccharomyces cerevisiae//Mol. Gen. Genet. -1998. -Vol. 258. -P. 546-552.
  28. Ceiká P., Vondrejs V., Storchová S. Dissection of the functions of the Saccharomyces cerevisiae RAD6 postreplicative repair group in mutagenesis and UV sensitivity//Genetics -2001. -Vol. 159. -P. 953-963.
  29. Prakash L. The structure and function of RAD6 and RAD18 DNA repair genes of Saccharomyces cerevisiae//Genome. -1989. -Vol. 31. -P. 597-600.
  30. Lawrence C. The RAD6 DNA repair pathway in Saccharomyces cerevisiae: what does it do, and how does it do it?//Bioessays. -1994. -Vol. 16. -P. 253-258.
  31. Watts F.Z. Sumoylation of PCNA: Wrestling with recombination at stalled replication forks//DNA Repair. -2006. -Vol. 5. -P. 399-403.
  32. Ulrich H.D. Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest//Trends Cell Biol. -2005. -Vol. 15. -P. 525-532.
  33. Ulrich H.D. The RAD6 pathway: control of DNA damage bypass and mutagenesis by ubiquitin and SUMO//Chembiochem. -2005. -Vol. 6. -P. 1735-1743.
  34. Baranowska H., Policinska Z. and Jachymezyk W.Y. Effects of the CDC2 gene on adaptive mutation in the yeast Saccharomyces cerevisiae//Curr. Genet. -1995. -Vol. 28. -P. 521-525.
  35. Babudri N., Pavlov Y.I., Matmati N., et al. Stationary-phase mutations in proofreading exonuclease-deficient strains in the yeast Saccharomyces cerevisiae//Mol. Gen. Genomics. -2001. -Vol. 265. -P. 362-366.
  36. Halas A., Baranowska H., Policinska Z. The influence of the mismatch-repair system on stationary-phase mutagenesis in the yeast Saccharomyces cerevisiae//Curr. Genet. -2002. -Vol. 42. -P. 140-146.
  37. Modrich P. and Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology//Ann. Rev. Biochem. -1996. -Vol. 65. -P. 101-133.
  38. Harfe B.D. and Jinks-Robertson S. DNA mismatch repair and genetic instability//Ann. Rev. Genet. -2000. -Vol. 34. -P. 359-399.
  39. Kunkel T.A. and Erie D.A. DNA mismatch repair//Ann. Rev. Biochem. -2005. -Vol. 74. -P. 681-710.
  40. Storchov Z. and Vondrejs V. Starvation-associated mutagenesis in yeast Saccharomyces cerevisiae is affected by Ras2/cAMP signaling pathway//Mut. Res. -1999. -Vol. 16. -P. 59-67.
  41. Thevelein J.M. and de Winde J.H. Novel sensing mechanisms and targets for the cAMP -protein kinase A pathway in the yeast Saccharomyces cerevisiae//Mol. Microbiol. -1999. -Vol. 33. -P. 904-918.
  42. Estruch F. Stress-controlled transcription factors, stressinduced genes and stress tolerance in budding yeast//FEMS Microbiol. Rev. -2000. -Vol. 24. -P. 469-486.
  43. Bresson A. and Fuchs R.P. Lesion bypass in yeast cells: Pol eta participates in a multi-DNA polymerases process//EMBO J. -2002. -Vol. 21. -P. 3881-3887.
  44. Zhang H. and Siede W. UV-induced TC transition at a TT photoproduct site is dependent on Saccharomyces cerevisiae polymerase eta in vivo//Nucleic Acid Res. -2002. -Vol. 30. -P. 1262-1267.
  45. Kozmin S.G., Pavlov Y.I., Kunkel T.A., et al. Roles of Saccharomyces cerevisiae DNA polymerases Poleta and polzeta in response to irradiation by simulated sunlight//Nucleic Acid Res. -2003. -Vol. 31. -P. 4541-4552.
  46. Heidenreich E., Eiser H. and Steinboeck F. Epistatic participation of REV1 and REV3 in the formation of UVinduced frameshift mutations in cell cycle arrested cells//Mut. Res. -2006. -Vol. 593. -P. 187-195.
  47. Abdulovic A.L. and Jinks-Robertson S. The in vivo characterization of translesion synthesis across UV-induced lesions in Saccharomyces cerevisiae: insights into Pol zeta-and Pol eta-dependent frameshift mutagenesis//Genetics. -2006. -Vol. 172. -P. 1487-1498.
  48. Lawrence C.W. and Maher V.M. Eukaryotic mutagenesis and translesion replication dependent on DNA polymerases zeta and Rev1 protein//Biochem. Soc. Trans. -2001. -Vol. 29. -P. 187-191.
  49. Daley J.M., Palmbos P.L., Wu D. et al., Nonhomologous end joining in yeast//Annu. Rev. Genet. -2005. -Vol. 39. -P. 431-451.
  50. Heidenreich E., Novotny R., Kneidinger B., et al. Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells.//EMBO J. -2003. -Vol. 22. -2274-2283.
  51. Krog B.O. and Symington L.S. Recombination proteins in yeast//Annu. Rev. Genet. -2004. -Vol. 38. -P. 233-271.
  52. Aylon Y. and Kupiec M. DSB repair: the yeast paradigm//DNA Repair. -2004. -Vol. 3. -P. 797-815.
  53. Heidenreich E. and Eisler H. Non-homologous end joining dependency of gamma-irradiation induced adaptive frameshift mutation formation in cell cycle-arrested yeast cells.//Mut. Res. -2004. -Vol. 556. -P. 201-208.
  54. Xiao W., Chow B.L., Broomfield S., et al. The Saccharomyces cerevisiae RAD6 group is composed of an error-prone and two error-free postreplication repair pathways//Genetics. -2000. -Vol. 155. -P. 1633-1641.
  55. Heidenreich E. and Wintersberger U. Adaptive reversions of a frameshift mutation in arrested Saccharomyces cerevisiae cells by simple deletions in mononucleotide repeats//Mut. Res. -2001. -Vol. 473. -P. 101-107.
  56. Wright B.E., Longacre A. and Reimers J.M. Hypermutation in derepressed operons of Escherichia coli K12//Proc. Natl. Acad. Sci. USA. -1999. -Vol. 96. -P. 5089-5094.
  57. Wright B.E. A biochemical mechanism for non-random mutations and evolution//J. Bacteriol. -2000. -Vol. 182. -P. 2993-3001.
  58. Reimers J.M., Schmidt K.H., Longacre A. Increased transcription rates correlate with increased reversion rates in leuB and argH Escherichia coli auxotrophs//Microbiology. -2004. -Vol. 150. -P. 1457-1466.
  59. Datta A. and Jinks-Robertson S. Association of increased spontaneous mutation rates with high levels of transcription in yeast//Science. -1995. -Vol. 26. -P. 1616-1619.
  60. Morey N.J., Greene C.N. and Jinks-Robertson S. Genetic analysis of transcription-associated mutations in Saccharomyces cerevisiae//Genetics. -2000. -Vol. 154. -P. 109-120.
  61. Lippert M.J., Freedman J.A., Barber M.A. et al. Identification of a distinctive mutation spectrum associated with high levels of transcription in yeast//Mol. Cell. Biol. -2004. -Vol. 24. -P. 4801-4809.
  62. Doetsch P.W. Translesion sythesis by RNA polymerases: occurrence and biological implications for transcriptional mutagenesis//Mut. Res. -2002. -Vol. 510. -P. 131-140.
  63. Viswanathan A., You H.J. and Doetsch P.W. Phenotypic change caused by transcriptional bypass of uracil in nondividing cells//Science. -1999. -Vol. 284. -P. 159-162.
  64. Pimpinelli S., Marini A., Babudri N. et al. 6-N-hydroxylaminopurine (HAP)-induced accumulation of variability in haploid and diploid strains of Aspergillus nidulans//Curr. Genet. -1997. -Vol. 32. -P. 331-336.
  65. Kivisaar M. Stationary phase mutagenesis: mechanisms that accelerate adaptation of microbial populations under environmental stress//Envirom. Microbiol. -2003. -Vol. 5. -P. 814-827.
  66. Roth J.R., Andersson D.I. Adaptive mutations: how growth under selection stimulates Lac(-) reversion by increasing target copy number//J. Bacteriol. -2004. -Vol. 186. -P. 4855-4860.
  67. Roth J.R., Andersson D.I. Adaptive mutation: how growth under selection contributes to the origin of genetic diversity and explains the phenomenon of adaptive mutations//Res. Microbiol. -2004. -Vol. 155. -P. 342-351.

© Бабудри Н., Лукачионни А., Ачилли А., 2006

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах