ДНК окружающей среды: история изучения, современные и перспективные направления в фундаментальных и прикладных исследованиях

Обложка
  • Авторы: Пинахина Д.В.1, Чекунова Е.М.2
  • Учреждения:
    1. Федеральное государственное автономное образовательное учреждение вышего образования «Национальный исследовательский университет ИТМО»
    2. Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет»
  • Выпуск: Том 18, № 4 (2020)
  • Страницы: 493-509
  • Раздел: Методология экологической генетики
  • URL: https://journals.rcsi.science/ecolgenet/article/view/25900
  • DOI: https://doi.org/10.17816/ecogen25900
  • ID: 25900

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Статья посвящена сравнительно молодому и активно развивающемуся подходу в исследовании биоразнообразия — анализу ДНК окружающей среды (environmental DNA — eDNA). В ней изложены современные представления о природе eDNA, краткая история ее изучения, охарактеризованы основные методы анализа. Описаны основные направления современных исследований, использующих методы eDNA, и перспективы их использования для изучения биоразнообразия. Обсуждаются достоинства, недостатки и ключевые проблемы в развитии этого подхода.

Об авторах

Дарья Владимировна Пинахина

Федеральное государственное автономное образовательное учреждение вышего образования «Национальный исследовательский университет ИТМО»

Автор, ответственный за переписку.
Email: acanthodasha@gmail.com
ORCID iD: 0000-0001-9896-6556
SPIN-код: 3163-7275
Scopus Author ID: 55551638800

канд. геол.-мин. наук (по специальности палеонтология и стратиграфия), студент магистратуры факультета информационных технологий и программирования

Россия, Санкт-Петербург

Елена Михайловна Чекунова

Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет»

Email: elena_chekunova@mail.ru
SPIN-код: 2788-6386
Scopus Author ID: 6701797455

д-р биол. наук, старший научный сотрудник кафедры генетики и биотехнологии

Россия, Санкт-Петербург

Список литературы

  1. Cristescu ME, Hebert PD. Uses and misuses of environmental DNA in biodiversity science and conservation. Annual Review of Ecology, Evolution, and Systematics. 2018;49(1): 209-230. https://doi.org/10.1146/annurev-ecolsys-110617-062306.
  2. Thomsen PF, Willerslev E. Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation. 2015;183:4-18. https://doi.org/10.1016/j.biocon.2014.11.019.
  3. Jarman SN, Berry O, Bunce M. The value of environmental DNA biobanking for long-term biomonitoring. Nat Ecol Evol. 2018;2(8): 1192-1193. https://doi.org/10.1038/s41559-018-0614-3.
  4. Barnes MA, Turner CR. The ecology of environmental DNA and implications for conservation genetics. Conserv Genet. 2016;17(1):1-17. https://doi.org/10.1007/s10592-015-0775-4.
  5. Dejean T, Valentini A, Duparc A, et al. Persistence of environmental DNA in freshwater ecosystems. PLOS ONE. 2011;6(8): e23398. https://doi.org/10.1371/journal.pone.0023398.
  6. Willerslev E, Hansen A, Binladen J, et al. Diverse plant and animal DNA from Holocene and Pleistocene sedimentary records. Science. 2003;300(5620):791-795. https://doi.org/10.1126/science.1084114.
  7. Stewart KA. Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA. Biodivers Conserv. 2019;28(5):983-1001. https://doi.org/10.1007/s10531-019-01709-8.
  8. Pilliod DS, Goldberg CS, Arkle RS, Waits LP. Factors influencing detection of eDNA from a stream-dwelling amphibian. Mol Ecol Resour. 2014;14(1):109-116. https://doi.org/ 10.1111/1755-0998.12159.
  9. Piggott MP. Evaluating the effects of laboratory protocols on eDNA detection probability for an endangered freshwater fish. Ecol Evol. 2016;6(9):2739-2750. https://doi.org/10.1002/ece3.2083.
  10. Goldberg CS, Pilliod DS, Arkle RS, Waits LP. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and idaho giant salamanders. PLoS One. 2011;6(7): e22746. https://doi.org/10.1371/journal.pone.0022746.
  11. Thomsen PF, Kielgast J, Iversen LL, et al. Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol. 2012;21(11):2565-2573. https://doi.org/ 10.1111/j.1365-294X.2011.05418.x.
  12. Thomsen PF, Kielgast J, Iversen LL, et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS One. 2012;7(8): e41732. https://doi.org/10.1371/journal.pone.0041732.
  13. Mächler E, Deiner K, Steinmann P, Altermatt F. Utility of environmental DNA for monitoring rare and indicator macroinvertebrate species. Freshwater Science. 2014;33(4):1174-1183. https://doi.org/10.1086/678128.
  14. de Souza LS, Godwin JC, Renshaw MA, Larson E. Environmental DNA (eDNA) detection probability is influenced by seasonal activity of organisms. PLoS One. 2016;11(10): e0165273. https://doi.org/10.1371/journal.pone.0165273.
  15. Laramie MB, Pilliod DS, Goldberg CS. Characterizing the distribution of an endangered salmonid using environmental DNA analysis. Biological Conservation. 2015;183:29-37. https://doi.org/10.1016/j.biocon.2014.11.025.
  16. Erickson RA, Rees CB, Coulter AA, et al. Detecting the movement and spawning activity of bigheaded carps with environmental DNA. Mol Ecol Resour. 2016;16(4):957-965. https://doi.org/10.1111/1755-0998.12533.
  17. Seymour M, Durance I, Cosby BJ, et al. Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Commun Biol. 2018;1:4. https://doi.org/10.1038/s42003-017-0005-3.
  18. Khanna M, Stotzky G. Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA. Appl Environ Microbiol. 1992;58(6): 1930-1939. https://doi.org/10.1128/AEM.58.6. 1930-1939.1992.
  19. Díaz-Ferguson EE, Moyer GR. History, applications, methodological issues and perspectives for the use environmental DNA (eDNA) in marine and freshwater environments. Rev Biol Trop. 2014;62(4):1273-1284. https://doi.org/10.15517/rbt.v62i4.13231.
  20. Ficetola GF, Miaud C, Pompanon F, Taberlet P. Species detection using environmental DNA from water samples. Biology Letters. 2008;4(4): 423-425. https://doi.org/10.1098/rsbl.2008.0118.
  21. Foote AD, Thomsen PF, Sveegaard S, et al. Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PLoS One. 2012;7(8):e41781. https://doi.org/10.1371/journal.pone.0041781.
  22. Piaggio AJ, Engeman RM, Hopken MW, et al. Detecting an elusive invasive species: a diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA. Mol Ecol Resour. 2014;14(2):374-380. https://doi.org/10.1111/1755-0998.12180.
  23. Alvarez AJ, Yumet GM, Santiago CL, Toranzos GA. Stability of manipulated plasmid DNA in aquatic environments. Environmental Toxicology and Water Quality. 1996;11(2): 129-135. https://doi.org/10.1002/(SICI)1098-2256(1996)11:2<129:: AID-TOX8>3.0.CO;2-B.
  24. Zhu B. Degradation of plasmid and plant DNA in water microcosms monitored by natural transformation and real-time polymerase chain reaction (PCR). Water Research. 2006;40(17):3231-3238. https://doi.org/10.1016/j.watres.2006.06.040.
  25. Willerslev E, Cappellini E, Boomsma W, et al. Ancient biomolecules from deep ice cores reveal a forested southern greenland. Science. 2007;317(5834):111-114. https://doi.org/10. 1126/science.1141758.
  26. Ogram A, Sayler GS, Barkay T. The extraction and purification of microbial DNA from sediments. Journal of Microbiological Methods. 1987;7(2-3): 57-66. https://doi.org/10.1016/0167-7012 (87)90025-X.
  27. Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev. 2004;68(4):669-685. https://doi.org/10.1128/MMBR.68.4.669-685.2004.
  28. Bailiff MD, Karl DM. Dissolved and particulate DNA dynamics during a spring bloom in the Antarctic Peninsula region, 1986-1987. Deep Sea Research Part A Oceanographic Research Papers. 1991;38(8-9):1077-1095. https://doi.org/10.1016/0198-0149(91)90097-Y.
  29. Paget E, Lebrun M, Freyssinet G, Simonet P. The fate of recombinant plant DNA in soil. Eur J Soil Biol. 1998;34(2):81-88. https://doi.org/10.1016/S1164-5563(99)90005-5.
  30. Willerslev E, Hansen A, Christensen B, et al. Diversity of Holocene life forms in fossil glacier ice. Proc Natl Acad Sci USA. 1999;96(14): 8017-8021. https://doi.org/10.1073/pnas.96. 14.8017.
  31. Martellini A, Payment P, Villemur R. Use of eukaryotic mitochondrial DNA to differentiate human, bovine, porcine and ovine sources in fecally contaminated surface water. Water Res. 2005;39(4):541-548. https://doi.org/10.1016/j.watres.2004.11.012.
  32. Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH. Environmental DNA. Mol Ecol. 2012;21(8):1789-1793. https://doi.org/10. 1111/j.1365-294X.2012.05542.x.
  33. Yoccoz NG. The future of environmental DNA in ecology. Mol Ecol. 2012;21(8):2031-2038. https://doi.org/10.1111/j.1365-294X.2012.05505.x.
  34. Lodge DM, Turner CR, Jerde CL, et al. Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. Mol Ecol. 2012;21(11):2555-2558. https://doi.org/10.1111/j.1365-294X.2012.05600.x.
  35. Bohmann K, Evans A, Gilbert MT, et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol. 2014;29(6): 358-367. https://doi.org/10.1016/j.tree.2014.04.003.
  36. Seymour M. Rapid progression and future of environmental DNA research. Commun Biol. 2019;2:80. https://doi.org/10.1038/s42003-019-0330-9.
  37. Ruppert K, Kline R, Rahman M. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation. 2019;17: e00547. https://doi.org/10.1016/j.gecco.2019.e00547.
  38. Bálint M, Pfenninger M, Grossart HP, et al. Environmental DNA time series in ecology. Trends Ecol Evol. 2018;33(12):945-957. https://doi.org/10.1016/j.tree.2018.09.003.
  39. Pedersen MW, Overballe-Petersen S, Ermini L, et al. Ancient and modern environmental DNA. Philos Trans R Soc Lond B Biol Sci. 2015;370(1660):20130383. https://doi.org/ 10.1098/rstb.2013.0383.
  40. Goldberg CS, Turner CR, Deiner K, et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods in Ecology and Evolution. 2016;7(11):1299-1307. https://doi.org/10. 1111/2041-210X.12595.
  41. Creer S, Deiner K, Frey S, et al. The ecologist’s field guide to sequence-based identification of biodiversity. Methods in Ecology and Evolution. 2016;7(9):1008-1018. https://doi.org/10.1111/2041-210X.12574.
  42. Hinlo R, Gleeson D, Lintermans M, Furlan E. Methods to maximise recovery of environmental DNA from water samples. PLoS One. 2017;12(6): e0179251. https://doi.org/10.1371/journal.pone.0179251.
  43. Tedersoo L, Tooming-Klunderud A, Anslan S. PacBio metabarcoding of Fungi and other eukaryotes: errors, biases and perspectives. New Phytol. 2018;217(3):1370-1385. https://doi.org/10.1111/nph.14776.
  44. Egeter B, Veríssimo J, Lopes-Lima M, et al. Speeding up the detection of invasive aquatic species using environmental DNA and nanopore sequencing. bioRxiv. 2020. https://doi.org/10.1101/2020.06.09.142521.
  45. Deiner K, Bik HM, Mächler E, et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol Ecol. 2017;26(21):5872-5895. https://doi.org/10.1111/mec.14350.
  46. Axtner J, Crampton-Platt A, Hörig LA, et al. An efficient and robust laboratory workflow and tetrapod database for larger scale environmental DNA studies. Gigascience. 2019;8(4): giz029. https://doi.org/10.1093/gigascience/giz029.
  47. Dufresne Y, Lejzerowicz F, Perret-Gentil LA, et al. SLIM: a flexible web application for the reproducible processing of environmental DNA metabarcoding data. BMC Bioinformatics. 2019;20(1):88. https://doi.org/10.1186/s12859-019-2663-2.
  48. Ficetola GF, Taberlet P, Coissac E. How to limit false positives in environmental DNA and metabarcoding? Mol Ecol Resour. 2016;16(3):604-607. https://doi.org/10.1111/1755-0998.12508.
  49. Furlan EM, Gleeson D, Wisniewski C, et al. eDNA surveys to detect species at very low densities: A case study of European carp eradication in Tasmania, Australia. J Appl Ecol. 2019;56(11):2505-2517. https://doi.org/10. 1111/1365-2664.13485.
  50. Valentini A, Taberlet P, Miaud C, et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol Ecol. 2016;25(4):929-942. https://doi.org/10.1111/mec.13428.
  51. Brown EA, Chain FJ, Zhan A, et al. Early detection of aquatic invaders using metabarcoding reveals a high number of non-indigenous species in Canadian ports. Diversity Distributions. 2016;22(10):1045-1059. https://doi.org/10.1111/ddi.12465.
  52. Clusa L, Miralles L, Basanta A, et al. eDNA for detection of five highly invasive molluscs. A case study in urban rivers from the Iberian Peninsula. PLoS One. 2017;12(11): e0188126. https://doi.org/10.1371/journal.pone.0188126.
  53. Muha TP, Skukan R, Borrell YJ, et al. Contrasting seasonal and spatial distribution of native and invasive Codium seaweed revealed by targeting species-specific eDNA. Ecol Evol. 2019;9(15): 8567-8579. https://doi.org/10.1002/ece3.5379.
  54. Great lakes restoration initiative. Asian carp early detection. Available from: https://www.usgs.gov/centers/glri/science/asian-carp-early-detection?qt-science_center_objects=0#qt-science_center_objects.
  55. Asian Carp. Environmental DNA. Available from: https://www.asiancarp.us/eDNA.html.
  56. Thomas AC, Tank S, Nguyen PL, et al. A system for rapid eDNA detection of aquatic invasive species. 2020;2(3):261-270. Environmental DNA. https://doi.org/10.1002/edn3.25.
  57. Rees HC, Bishop K, Middleditch DJ, et al. The application of eDNA for monitoring of the Great Crested Newt in the UK. Ecol Evol. 2014;4(21):4023-4032. https://doi.org/10. 1002/ece3.1272.
  58. Biggs J, Ewald N, Valentini A, et al. Analytical and methodological development for improved surveillance of the Great Crested Newt. Defra Project WC1067. Oxford: Freshwater Habitats Trust; 2014. 142 р.
  59. Adams CI, Knapp M, Gemmell NJ, et al. Beyond biodiversity: can environmental DNA (eDNA) cut it as a population genetics tool? Genes (Basel). 2019;10(3):192. https://doi.org/10. 3390/genes10030192.
  60. Reinhardt T, van Schingen M, Windisch HS, et al. Monitoring a loss: Detection of the semi-aquatic crocodile lizard (Shinisaurus crocodilurus) in inaccessible habitats via environmental DNA. Aquatic Conservation: Marine and Freshwater Ecosystems. 2019;29(3):353-360. https://doi.org/10.1002/aqc.3038.
  61. Franklin TW, McKelvey KS, Golding JD, et al. Using environmental DNA methods to improve winter surveys for rare carnivores: DNA from snow and improved noninvasive techniques. Biological Conservation. 2019;229:50-58. https://doi.org/10.1016/j.biocon.2018.11.006.
  62. Meyer RS, Curd EE, Schweizer T, et al. The California environmental DNA “CALeDNA” program. Posted Content published. 2019:503383. https://doi.org/10.1101/503383.
  63. CALeDNA. California Environmental DNA Together, we can help protect California’s biodiversity. Available from: http://ucedna.com.
  64. Hempel CA, Peinert B, Beermann AJ, et al. Using environmental DNA to monitor the reintroduction success of the Rhine sculpin (Cottus rhenanus) in a restored stream. Peer J Preprints. 2019;7: e27574v2. https://doi.org/10.7287/peerj.preprints.27574v2.
  65. Boussarie G, Bakker J, Wangensteen O, et al. Environmental DNA illuminates the dark diversity of sharks. Sci Adv. 2018;4(5): eaap9661. https://doi.org/10.1126/sciadv.aap9661.
  66. Sengupta ME, Hellström M, Kariuki HC, et al. Environmental DNA for improved detection and environmental surveillance of schistosomiasis. Proc Natl Acad Sci U S A. 2019;116(18):8931-8940. https://doi.org/10.1073/pnas.1815046116.
  67. Hall EM, Crespi EJ, Goldberg CS, Brunner JL. Evaluating environmental DNA-based quantification of ranavirus infection in wood frog populations. Mol Ecol Resour.2016;16(2):423-433. https://doi.org/10.1111/1755-0998.12461.
  68. Kamoroff C, Goldberg CS. Using environmental DNA for early detection of amphibian chytrid fungus Batrachochytrium dendrobatidis prior to a ranid die-off. Dis Aquat Org. 2017;127(1):75-79. https://doi.org/10.3354/dao03183.
  69. Gomes BG, Hutson KS, Domingos JA, et al. Use of environmental DNA (eDNA) and water quality data to predict protozoan parasites outbreaks in fish farms. Aquaculture. 2017;479:467-473. https://doi.org/10.1016/j.aquaculture.2017.06.021.
  70. Peters L, Spatharis S, Dario MA, et al. Environmental DNA: a new low-cost monitoring tool for pathogens in salmonid aquaculture. Front Microbiol. 2018;9:3009. https://doi.org/10.3389/fmicb.2018.03009.
  71. Environmental DNA Solutions. Cannabis pathogen detection. Available from: https://precisionbiomonitoring.com/environmental-dna-solutions/.
  72. Banchi E, Ametrano CG, Stanković D, et al. DNA metabarcoding uncovers fungal diversity of mixed airborne samples in Italy. PLoS One. 2018;13(3): e0194489. https://doi.org/10.1371/journal.pone.0194489.
  73. Tong X, Xu H, Zou L, et al. High diversity of airborne fungi in the hospital environment as revealed by meta-sequencing-based microbiome analysis. Sci Rep. 2017;7:39606. https://doi.org/10.1038/srep39606.
  74. Valentini A, Miquel C, Taberlet P. DNA barcoding for honey biodiversity. Diversity. 2010;2(4): 610-617. https://doi.org/10.3390/d2040610.
  75. De Vere N, Jones LE, Gilmore T, et al. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Sci Rep. 2017;7:42838. https://doi.org/10.1038/srep42838.
  76. Pornon A, Escaravage N, Burrus M, et al. Using metabarcoding to reveal and quantify plant-pollinator interactions. Sci Rep. 2016;6:27282. https://doi.org/10.1038/srep27282.
  77. Lucas A, Bodger O, Brosi BJ, et al. Generalisation and specialisation in hoverfly (Syrphidae) grassland pollen transport networks revealed by DNA metabarcoding. J Anim Ecol. 2018;87(4):1008-1021. https://doi.org/10. 1111/1365-2656.12828.
  78. Suchan T, Talavera G, Sáez L, et al. Pollen metabarcoding as a tool for tracking long-distance insect migrations. Mol Ecol Resour. 2019;19(1): 149-162. https://doi.org/10.1111/1755-0998. 12948.
  79. Li F, Peng Y, Fang W, et al. Application of environmental dna metabarcoding for predicting anthropogenic pollution in rivers. Environ Sci Technol. 2018;52(20):11708-11719. https://doi.org/10.1021/acs.est.8b03869.
  80. Tromas N, Fortin N, Bedrani L, et al. Characterising and predicting cyanobacterial blooms in an 8-year amplicon sequencing time course. ISME J. 2017;11(8):1746-1763. https://doi.org/10.1038/ismej.2017.58.
  81. Sigsgaard EE, Carl H, Møller PR, Thomsen PF. Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biological Conservation. 2015;183:46-52. https://doi.org/10.1016/j.biocon.2014.11.023.
  82. Parsons KM, Everett M, Dahlheim M, Park L. Water, water everywhere: environmental DNA can unlock population structure in elusive marine species. R Soc Open Sci. 2018;5(8):180537. https://doi.org/10.1098/rsos.180537.
  83. Elbrecht V, Vamos EE, Steinke D, Leese F. Estimating intraspecific genetic diversity from community DNA metabarcoding data. Peer J. 2018;6: e4644. https://doi.org/10.7717/peerj.4644.
  84. Pont D, Rocle M, Valentini A, et al. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Sci Rep. 2018;8(1):10361. https://doi.org/10.1038/s41598-018-28424-8.
  85. Lacoursière-Roussel A, Howland K, Normandeau E, et al. eDNA metabarcoding as a new surveillance approach for coastal Arctic biodiversity. Ecol Evol. 2018;8(16):7763-7777. https://doi.org/10.1002/ece3.4213.
  86. Cowart DA, Murphy KR, Cheng C-HC. Metagenomic sequencing of environmental DNA reveals marine faunal assemblages from the West Antarctic Peninsula. Mar Genomics. 2018;37:148-160. https://doi.org/10.1016/j.margen.2017.11.003.
  87. Woods Hole Oceanographic Institution. New eyes in the twilight zone. Using E-DNA to discover what lives in the deep. Available from: https://www.whoi.edu/multimedia/new-eyes-twilight-zone/.
  88. Pansu J, Giguet-Covex C, Ficetola GF, et al. Reconstructing long-term human impacts on plant communities: an ecological approach based on lake sediment DNA. Mol Ecol. 2015;24(7): 1485-1498. https://doi.org/10.1111/mec.13136.
  89. Pedersen MW, Ruter A, Schweger C, et al. Postglacial viability and colonization in North America’s ice-free corridor. Nature. 2016;537(7618): 45-49. https://doi.org/10.1038/nature19085.
  90. Garlapati D, Charankumar B, Ramu K, et al. A review of the applications and recent advances in environmental DNA (eDNA) metagenomics. Reviews in Environmantal Science and Bio/Tachnology. 2019;18(3):389-411. https://doi.org/10.1007/s11157-019-09501-4.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Основные общие этапы анализа ДНК окружающей среды

Скачать (199KB)
3. Рис. 2. Основные направления, в которых используется анализ ДНК окружающей среды, и ссылки на примеры исследований в этих направлениях

Скачать (301KB)

© ООО "Эко-вектор", 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах