Биосинтез гекса- и пентамерных хитоолигосахаридов с помощью n-ацетилглюкозаминилтрансферазы ризобиальных бактерий

Обложка

Цитировать

Полный текст

Аннотация

Хитоолигосахариды находят широкое практическое применение, что определяет интерес к изучению возможности биосинтеза этих соединений. В данной работе осуществлен синтез гекса-N-ацетилхитогексаозы и пента-N-ацетилхитопентаозы в клетках E. coli с использованием уникального фермента N-ацетилглюкозаминилтрансферазы клубеньковых бактерий Rhizobium sp. GRH2 и M. loti. При культивировании бактерий E. coli, экспрессирующих рекомбинантные ферменты, в присутствии субстрата N-ацетилглюкозамина, уровень синтеза хитоолигосахаридов достигал нескольких миллиграмм на литр жидкой культуры. Анализ полученных соединений с помощью методов ВЭЖХ и масс-спектрометрии подтвердил их соответствие стандартам.

Об авторах

Ирина Викторовна Леппянен

ГНУ ВНИИСХМ

Email: leppyanen_irina@rambler.ru
младший научный сотрудник, лаборатория молекулярной и клеточной биологии.

Татьяна Олеговна Артамонова

Санкт-Петербургский государственный политехнический университет

Email: artamonova@nanobio.spbstu.ru
научный сотрудник

Сергей Александрович Лопатин

Учреждение Российской академии наук Центр «Биоинженерия» РАН

Email: lopatin@biengi.ac.ru
к. х. н., старший научный сотрудник

Валерий Петрович Варламов

Учреждение Российской академии наук Центр «Биоинженерия» РАН

Email: varlamov@biengi.ac.ru
д. х. н., заведующий лабораторией, профессор

Игорь Анатольевич Тихонович

ГНУ ВНИИСХМ

Email: contact@arriam.spb.ru
д. б. н., профессор, академик РАСХН

Елена Анатольевна Долгих

ГНУ ВНИИСХМ

Email: dol2helen@yahoo.com
к. б. н., ведущий научный сотрудник, лаборатория молекулярной и клеточной биологии

Список литературы

  1. Кочетков Н. К., 2000. Твердофазный синтез олигосахаридов и гликоконъюгатов // Успехи химии. Т. 69, № 9. С. 869–896.
  2. Albersheim P., Darvill A. G., McNeil M., Valent B., Sharp J. K., 1983. Oligosaccarins, naturally occurring carbohydrates with biological regulatory functions // Structure and Function of Plant Genomes / Eds. Ciferri O., Dure I. L. New York, Plenum. P. 293–312.
  3. Bettler E., Samain E., Chazalet V. et al., 1999. The living factory: in vivo production of N-acetyllactosamine containing carbohydrates in E. coli // Glycoconjugate J. Vol. 16. P. 205–212.
  4. Boons G.-J., 1996. Strategies in oligosaccharide synthesis // Tetrahedron. Vol. 52. P. 1095–1121.
  5. Bowen A. R., Chen-Wu J. L., Momany M. et al., 1992. Classification of fungal chitin synthases // Proc. Natl. Acad. Sci. USA. Vol. 89, N 2. P. 519–523.
  6. Dhugga K. S., Anderson P. C., Nichols S. E., 2000. Expression of chitin synthase and chitin deacetylase genes in plants to alter the cell wall for industrial uses and improved disease resistance. WO/2000/009729, USA.
  7. Gagneux P., Varki A., 1999. Evolutionary considerations in relating oligosaccharide diversity to biological function // Glycobiology. Vol. 9, N 8. P. 747–755.
  8. Geremia R. A., Mergaert P., Geelen D. et al., 1994. The NodC protein of Azorhizobium caulinodans is an N-acetylglucosaminyltransferase // Proc. Natl. Acad. Sci. USA. Vol. 91. P. 2669–2673.
  9. Endo T., Koizumi S., Tabata K., Ozaki A., 2000. Large-scale production of CMP-NeuAc and sialylated oligosaccharides through bacterial coupling // Appl. Microbiol. Biotech. Vol. 53. P. 257–261.
  10. Inoue H., Nojima H., Okayama H., 1990. High efficiency transformation of E. coli with plasmids // Gene. Vol. 96. P. 23–28.
  11. Harish Prashanth K. V., Tharanathan R. N., 2005. Depolymerized products of chitosan as potent inhibitors of tumor-induced angiogenesis // Biochim. Biophysic. Acta. Vol. 1722. P. 22– 29.
  12. Kamst E., van der Drift K. M. G.M., Thomas-Oates J. E., Lugtenberg B. J., 1995. Mass spectrometric analysis of chitin oligosaccharides produced by Rhizobium NodC protein in E. coli // J. Bacteriol. Vol. 177. P. 6282–6285.
  13. Kamst E., Pilling J., Raamsdonk L. M. et al., 1997. Rhizobium nodulation protein NodC is an important determinant of chitin oligosaccharide chain length in Nod factor biosynthesis // J. Bacteriol. Vol. 179. P. 2103.
  14. Kamst E., Bakkers J., Quaedvlieg N. E. M. et al., 1999. Chitin oligosaccharide synthesis by rhizobia and zebrafish embryos starts by glycosyl transfer to O4 of the reducing-terminal residue // Biochemistry. Vol. 38. P. 4045–4052.
  15. Khan W., Prithiviraj B., Smith D. L., 2003. Chitosan and chitin oligomers increase phenylalanineammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves // J. Plant Physiol. Vol. 160. P. 859–863.
  16. Koizumi S., 2003. Large-scale production of oligosaccharides using bacterial functions // Trends Glycosci. Glycotechnol. Vol.15, N 82. P. 65–74.
  17. Koping-Hoggard M., Varum K. M., Issa M. et al., 2004. Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers // Gene Therapy. Vol. 11. P. 1441–1452.
  18. Kunz C., Rudloff S., Baier W., Klein N., Strobel S., 2000. Oligosaccharides in human milk: structural, functional and metabolic aspects // Annu. Rev. Nutr. Vol. 20. P. 699–722.
  19. Lee S. Y., Rasheed S., 1990. A simple procedure for maximum yield of high-quality plasmid DNA // Biotechniques. Vol. 9, N. 6. P. 676–679.
  20. Lopez-Lara I. M., Orgambide G., Dazzo F. B. et al., 1993. Characterization and symbiotic importance of acidic extracellular polysaccharides of Rhizobium sp. strain GRH2 isolated from acacia nodules // J. Bacteriology. Vol. 175, N 10. P. 2826–2832.
  21. Lopez-Lara I. M., van den Berg J. D. J., Thomas-Oates J. E. et al., 1995. Structural identification of the lipo-chitin oligosaccharide nodulation signals of Rhizobium loti // Molec. Microbiology. Vol. 15, N 4. P. 627–638.
  22. McAuliffe J. C., Hindsgaul O., 2000. Carbohydrates in medicine // Molecular and cellular glycobiology / Eds. Fukuda M., Hindsgaul O., New York, Oxford University Press. P. 249–285.
  23. Mergaert P., D’Haeze W., Geelen D. et al., 1995. Biosynthesis of Azorhizobium caulinodans Nod Factors // J. Biolog. Chem. Vol. 270, N. 49, P. 29217–29223.
  24. Miroux B., Walker J. E., 1996. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels // J. Molecular Biology. Vol. 260. P. 289–298.
  25. Murata T., Usui T., 2006. Large-scale Production of Oligosaccharides Using Bacterial Functions // Biosci. Biotechnol. Biochem. Vol. 70, N 5. P. 1049–1059.
  26. Parlato M. C., Kamat M. N., Wang H. et al., 2008. Application of glycosyl thioimidates in solid-phase oligosaccharide synthesis // J. Org. Chem. Vol. 73, N 5. P. 1716–1725.
  27. Perugino G., Trincone A., Rossi1 M., Moracci1 M., 2004. Oligosaccharide synthesis by glycosynthases // Trends in Biotechnology. Vol. 22, N 1. P. 31–37.
  28. Priem G., Gilbert M., Wakarchuk W. W. et al., 1997. A new fermentation process allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria // Carbohydrate Research. Vol. 302. P. 35–42.
  29. Ruffing A., Chen R. R., 2006 а. Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis // Microbial Cell Factories. Vol. 5. P. 25.
  30. Ruffing A., Mao Z., Chen R. R., 2006b. Metabolic engineering of Agrobacterium sp. for UDP-galactose regeneration and oligosaccharide synthesis // Metabolic Engineering. Vol. 8. P. 465–473.
  31. Samain E., Drouillard S., Heyraud A. et al., 1997. Gram-scale synthesis of recombinant chitooligosaccharides in Escherichia coli // Carbohydrate Research. Vol. 302. P. 35–42.
  32. Silverman S. J., 1989. Similar and different domains of chitin synthases 1 and 2 of Saccharomyces cerevisiae. Two isozymes with distinct functions // Yeast. Vol. 5. P. 459–467.
  33. Simunek J., Koppova I., Filip L. et al., 2010. The antimicrobial action of low-molar-mass chitosan, chitosan derivatives and chitooligosaccharides on bifidobacteria // Folia Microbiologica. Vol. 55, N 4. P. 379–382.
  34. Spaink H. P., Sheeley D. M., van Brussel A. A. N. et al., 1991. A novel highly unsaturated fatty acid moiety of lipooligosaccharide signals determines host specificity of Rhizobium // Nature. Vol. 354. P. 125–130.
  35. Thanou M., Florea B. I., Geldof M. et al., 2002. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines // Biomaterials. Vol. 23, N 1. P. 153–159.
  36. Venkatesan J., Pangestuti R., Qian Z.-J. et al., 2010. Biocompatibility and alkaline phosphatase activity of phosphorylated chitooligosaccharides on the osteosarcoma MG63 Cell Line // J. Func. Biomaterials. Vol. 1. P. 3–13.
  37. Xu Q., Dou J., Wei P. et al., 2008. Chitooligosaccharides induce apoptosis of human hepatocellular carcinoma cells via up-regulation of Bax // Carbohydrate Polymers. Vol. 71. P. 509–514.

© Леппянен И.В., Артамонова Т.О., Лопатин С.А., Варламов В.П., Тихонович И.А., Долгих Е.А., 2013

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах