Идентификация последовательностей, кодирующих ncr-пептиды и дефензины, в метасборке транскриптома азотфиксирующих клубеньков гороха посевного (pisum sativum l.)

Обложка

Цитировать

Полный текст

Аннотация

Активное и зачастую бесконтрольное применение антибиотиков в медицине и сельском хозяйстве приводит к возникновению резистентности к используемым веществам, что снижает эффективность их применения. Один из способов решения данной проблемы — разработка новых антибиотиков на основе растительных пептидов, обладающих антимикробной активностью. К таковым относятся дефензины (характерные для всех растений) и NCR-пептиды, специфически синтезируемые в клубеньках некоторых бобовых растений. В настоящем исследовании из доступных данных РНК-секвенирования транскриптома клубеньков гороха посевного (Pisum sativum L.) была получена метасборка транскриптома, использованная для поиска последовательностей, кодирующих антимикробные пептиды. В результате было идентифицировано 55 и 908 уникальных последовательностей, кодирующих дефензины и NCR-пептиды соответственно. Последовательности, для которых был предсказан сайт узнавания сигнальной пептидазой, были разделены на сигнальную и зрелую части пептида. Среди зрелых дефензинов антимикробной активностью, предсказанной in silico, обладают 22 пептида, среди представителей семейства NCR-пептидов — 422 последовательности. Таким образом, были идентифицированы гены, экспрессирующиеся в азотфиксирующих клубеньках гороха и кодирующие дефензины и NCR-пептиды, являющиеся кандидатами для проверки их антимикробной активности в опытах in vitro.

Об авторах

Евгений Андреевич Зорин

Федеральное государственное бюджетное научное учреждение “Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии”

Автор, ответственный за переписку.
Email: kjokkjok8@gmail.com

Инженер-исследователь, лаборатория генетики растительно-микробных взаимодействий

Россия, Санкт-Петербург, ш. Подбельского, 3.

Марина Сергеевна Клюкова

Федеральное государственное бюджетное научное учреждение “Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии”

Email: marina.kliukova@gmail.com

Инженер-исследователь, лаборатория генетики растительно-микробных взаимодействий

 

Россия, Санкт-Петербург, ш. Подбельского, 3.

Ольга Алексеевна Кулаева

Федеральное государственное бюджетное научное учреждение “Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии”

Email: okulaeva@arriam.ru

Кандидат биологических наук, старший научный сотрудник, лаборатория генетики растительно-микробных взаимодействий

 

Россия, Санкт-Петербург, ш. Подбельского, 3.

Алексей Михайлович Афонин

Федеральное государственное бюджетное научное учреждение “Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии”

Email: afoninalexeym@gmail.com

Инженер-исследователь, лаборатория генетики растительно-микробных взаимодействий

Россия, Санкт-Петербург, ш. Подбельского, 3.

Игорь Анатольевич Тихонович

Федеральное государственное бюджетное научное учреждение “Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии”; Федеральное государственное бюджетное образовательное учреждение высшего образования “Санкт-Петербургский государственный университет”
 

Email: arriam2008@yandex.ru

Научный руководитель института, академик РАН, д.б.н., профессор

Россия, Санкт-Петербург, ш. Подбельского, 3.

Владимир Александрович Жуков

Федеральное государственное бюджетное научное учреждение “Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии”

Email: vzhukov@arriam.ru

Кандидат биологических наук, заведующий лабораторией, лаборатория генетики растительно-микробных взаимодействий

Россия, Санкт-Петербург, ш. Подбельского, 3.

Список литературы

  1. Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11: 1645-58. https://doi.org/10. 2147/IDR.S173867.
  2. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. PT. 2015;40(4):277-283.
  3. Тихонович И.А., Андронов Е.Е., Борисов А.Ю., и др. Принцип дополнительности геномов в расширении адаптационного потенциала растений // Генетика. – 2015. – Т. 51. – № 9. – С. 973–990. [Tikhonovich IA, Andronov EE, Borisov AY, et al. The principle of genome complementarity in the enhancement of plant adaptive capacities. Russian Journal of Genetics. 2015;51(9):831-846. (In Russ.)]. https://doi.org/10. 7868/S001667581509012X.
  4. Nawrot R, Barylski J, Nowicki G, et al. Plant antimicrobial peptides. Folia Microbiol (Praha). 2014;59(3): 181-196. https://doi.org/10. 1007/s12223-013-0280-4.
  5. Parisi K, Shafee TMA, Quimbar P, et al. The evolution, function and mechanisms of action for plant defensins. Semin Cell Dev Biol. 2019;88:107-118. https://doi.org/10. 1016/j.semcdb.2018. 02. 004.
  6. Kato T, Kawashima K, Miwa M, et al. Expression of genes encoding late nodulins characterized by a putative signal peptide and conserved cysteine residues is reduced in ineffective pea nodules. Mol Plant Microbe Interact. 2002;15(2):129-137. https://doi.org/10. 1094/MPMI.2002. 15. 2. 129.
  7. Mergaert P, Nikovics K, Kelemen Z, et al. A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiol. 2003;132(1):161-173. https://doi.org/10. 1104/pp.102. 018192.
  8. Frühling M, Albus U, Hohnjec N, et al. A small gene family of broad bean codes for late nodulins containing conserved cysteine clusters. Plant Sci. 2000;152(1):67-77. https://doi.org/10. 1016/s0168-9452(99)00219-8.
  9. Crockard A, Bjourson J, Dazzo B, Cooper JE. A white clover nodulin gene, dd23b, encoding a cysteine cluster protein, is expressed in roots during the very early stages of interaction with Rhizobium leguminosarumbiovar trifolii and after treatment with chitolipooligosaccharide Nod factors. J Plant Res. 2002;115(6):439-447. https://doi.org/10. 1007/s10265-002-0053-7.
  10. Yeragani VK, Pohl R, Balon R. Lactate-induced panic and beta-adrenergic blockade. Psychiatry Res. 1990;32(1): 93-94. https://doi.org/10. 1016/0165-1781(90)90139-v.
  11. Mylona P, Pawlowski K, Bisseling T. Symbiotic nitrogen fixation. Plant Cell. 1995;7(7):869-885. https://doi.org/10. 1105/tpc.7. 7. 869.
  12. Arnold MF, Shabab M, Penterman J, et al. Genome-wide sensitivity analysis of the microsymbiont Sinorhizobium meliloti to symbiotically important, defensin-like host peptides. MBio. 2017;8(4).pii: e01060-17. https://doi.org/10. 1128/mBio.01060-17.
  13. Nagy K, Mikuláss KR, Végh AG, et al. Interaction of cysteine-rich cationic antimicrobial peptides with intact bacteria and model membranes. Gen Physiol Biophys. 2015;34(2):135-144. https://doi.org/10. 4149/gpb_2015002.
  14. Ordögh L, Vörös A, Nagy I, et al. Symbiotic plant peptides eliminate Candida albicans both in vitro and in an epithelial infection model and inhibit the proliferation of immortalized human cells. Biomed Res Int. 2014;2014:320796. https://doi.org/10. 1155/2014/320796.
  15. Farkas A, Maróti G, Durgő H, et al. Medicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms. Proc Natl Acad Sci USA. 2014;111(14):5183-5188. https://doi.org/10. 1073/pnas.1404169111.
  16. Farkas A, Maróti G, Kereszt A, et al. Comparative analysis of the bacterial membrane disruption effect of two natural plant antimicrobial peptides. Front Microbiol. 2017;8:51. https://doi.org/10. 3389/fmicb.2017. 00051.
  17. Van der Weerden NL, Anderson MA. Plant defensins: common fold, multiple functions. Fungal Biol Rev. 2013;26(4):121-131. https://doi.org/10. 1016/j.fbr.2012. 08. 004.
  18. Sudheesh S, Sawbridge TI, Cogan NO, et al. De novo assembly and characterisation of the field pea transcriptome using RNA-Seq. BMC Genomics. 2015;16(1):611. https://doi.org/10. 1186/s12864-015-1815-7.
  19. Alves-Carvalho S, Aubert G, Carrère S, et al. Full-length de novoassembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. Plant J. 2015;84(1):1-19. https://doi.org/10. 1111/tpj.12967.
  20. Zhukov VA, Zhernakov AI, Kulaeva OA, et al. De novo assembly of the pea (Pisum sativum L.) nodule transcriptome. Int J Genomics. 2015;2015:1-11. https://doi.org/10. 1155/2015/695947.
  21. Babraham Bioinformatics. FastQC [Internet]. Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
  22. Joint Genome Institute. BBTools [Internet]. Available from: https://jgi.doe.gov/data-and-tools/bbtools/.
  23. Grabherr MG, Haas BJ, Yassour M, et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol. 2011;29(7):644-652. https://doi.org/10. 1038/nbt.1883.
  24. Smith-Unna R, Boursnell C, Patro R, et al. TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res. 2016;26(8):1134-1144. https://doi.org/10. 1101/gr.196469. 115.
  25. Haas BJ, Papanicolaou A, Yassour M, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494-1512. https://doi.org/10. 1038/nprot.2013. 084.
  26. Zhou P, Silverstein KA, Gao L, et al. Detecting small plant peptides using SPADA (small peptide alignment discovery application). BMC Bioinformatics. 2013;14(1):335. https://doi.org/10. 1186/1471-2105-14-335.
  27. Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 2005;33:W465-W467. https://doi.org/10. 1093/nar/gki458.
  28. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 2007;23(6):673-679. https://doi.org/10. 1093/bioinformatics/btm009.
  29. Birney E, Clamp M, Durbin R. GeneWise and genomewise. Genome Res. 2004;14(5):988-995. https://doi.org/10. 1101/gr.1865504.
  30. Armenteros JJ, Tsirigos KD, Sønderby CK, et al. SignalP 5. 0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37(4):420-423. https://doi.org/10. 1038/s41587-019-0036-z.
  31. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059-3066. https://doi.org/10. 1093/nar/gkf436.
  32. Pirtskhalava M, Gabrielian A, Cruz P, et al. DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res. 2016;44(D1):D1104-1112. https://doi.org/10. 1093/nar/gkv1174.
  33. Waghu FH, Barai RS, Gurung P, Idicula-Thomas S. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res. 2016;44(D1): D1094-1097. https://doi.org/10. 1093/nar/gkv1051.
  34. Maróti G, Downie JA, Kondorosi É. Plant cysteine-rich peptides that inhibit pathogen growth and control rhizobial differentiation in legume nodules. Curr Opin Plant Biol. 2015;26:57-63. https://doi.org/10. 1016/j.pbi.2015. 05. 031.
  35. Demina IV, Persson T, Santos P, et al. Comparison of the nodule vs. root transcriptome of the actinorhizal plant Datisca glomerata: actinorhizal nodules contain a specific class of defensins. PLoS ONE. 2013;8(8):e72442. https://doi.org/10. 1371/journal.pone.0072442.
  36. Handa Y, Nishide H, Takeda N, et al. RNA-seq Transcriptional profiling of an arbuscular mycorrhiza provides insights into regulated and coordinated gene expression in Lotus japonicus and Rhizophagus irregularis. Plant Cell Physiol. 2015;56(8):1490-1511. https://doi.org/10. 1093/pcp/pcv071.
  37. Silverstein KA, Graham MA, VandenBosch KA. Novel paralogous gene families with potential function in legume nodules and seeds. Curr Opin Plant Biol. 2006;9(2): 142-6. https://doi.org/10. 1016/j.pbi.2006. 01. 002.
  38. Mergaert P, Uchiumi T, Alunni B, et al. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc Natl Acad Sci USA. 2006;103(13):5230-5235. https://doi.org/10. 1073/pnas.0600912103.
  39. Van de Velde W, Zehirov G, Szatmari A, et al. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science. 2010;327(5969):1122-1126. https://doi.org/10. 1126/science.1184057.
  40. Maróti G, Kondorosi É. Nitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis? Front Microbiol. 2014;5:326. https://doi.org/10. 3389/fmicb.2014. 00326.
  41. Haag AF, Baloban M, Sani M, et al. Protection of sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis. PLOS Biol. 2011;9(10):e1001169. https://doi.org/10. 1371/journal.pbio.1001169.
  42. Meadows R. How symbiotic bacteria survive host defenses. PLoS Biol. 2011;9(10):e1001164. https://doi.org/10. 1371/journal.pbio.1001164.
  43. Mansfield J, Genin S, Magori S, et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol. 2012;13(6):614-629. https://doi.org/10. 1111/j.1364-3703. 2012. 00804. x.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Зорин Е.А., Клюкова М.С., Кулаева О.А., Афонин А.М., Тихонович И.А., Жуков В.А., 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах