Sinorhizobium meliloti: хромосомные типы и геномные острова

Обложка

Цитировать

Полный текст

Аннотация

Выполнен анализ полиморфизма последовательностей корового генома клубеньковых бактерий S. meliloti с целью выявления хромосомных типов и оценки встречаемости в них геномных островов, рассматриваемых как акцессорные элементы хромосомы. В результате сопряженного анализа генов-маркеров M-I (betBC) и M-II (SMc04407-SMc04881), продукты которых задействованы в клеточном метаболизме и вовлечены в процессы формирования стрессоустойчивости, а также последовательностей маркера M-III (IGS rrs-rrl), используемых в филогенетических исследованиях на уровне вида, были выявлены достоверные различия между пятью типическими группами и девятью подгруппами штаммов, различавшихся по району и источнику выделения, а также по солеустойчивости. Определены четыре хромосомных типа и показана предпочтительность наличия одного из трех островов Rm1021 в каждом из них. Установлены достоверные различия по встречаемости штаммов, имевших определенный хромосомный тип в очагах разнообразия люцерны, расположенных в северных районах Кавказа и Казахстана (Приаралье), а также в агроценозах. Сделано заключение, что штаммы с измененными маркерами M-I/M-II могут относиться к дивергентным клональным линиям, тогда как штаммы с измененным маркером M-III, а также маркерами M-I/M-II могут являться представителями нового(ых) биовара(ов) клубеньковых бактерий люцерны, который(ые) формируется(ются) значительно активнее в современном центре интрогрессивной гибридизации люцерн в Приаралье.

Об авторах

Мария Евгеньевна Черкасова

Федеральное государственное бюджетное научное учреждение «Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии»

Email: mariiacherkasova@mail.ru
ORCID iD: 0000-0003-1873-9674
SPIN-код: 5341-5736
Scopus Author ID: 57191569585
ResearcherId: C-9626-2017

инж.-исследователь, лаб. генетики и селекции микроорганизмов

Россия, 196608, Санкт-Петербург, Пушкин-8, ш. Подбельского д. 3

Виктория Спартаковна Мунтян

Федеральное государственное бюджетное научное учреждение «Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии»

Email: vucovar@yandex.ru
ORCID iD: 0000-0002-1979-0853
SPIN-код: 7138-6763
Scopus Author ID: 56149831800
ResearcherId: K-5378-2013

м.н.с, лаб. генетики и селекции микроорганизмов

Россия, 196608, Санкт-Петербург, Пушкин-8, ш. Подбельского д. 3

Алла Сергеевна Саксаганская

Федеральное государственное бюджетное научное учреждение «Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии»

Email: allasaksaganskaya@mail.ru
ORCID iD: 0000-0002-8547-4904
SPIN-код: 5832-1676
Scopus Author ID: 57196477431
ResearcherId: H-8830-2017

инж.-исследователь, лаб. генетики и селекции микроорганизмов

Россия, 196608, Санкт-Петербург, Пушкин-8, ш. Подбельского д. 3

Борис Васильевич Симаров

Федеральное государственное бюджетное научное учреждение «Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии»

Email: genet@yandex.ru
ORCID iD: 0000-0002-6893-557X
SPIN-код: 6859-1141
Scopus Author ID: 7003687173
ResearcherId: H-8898-2017

проф., д.б.н., глав.н.с., лаб. генетики и селекции микроорганизмов

Россия, 196608, Санкт-Петербург, Пушкин-8, ш. Подбельского д. 3

Марина Львовна Румянцева

Федеральное государственное бюджетное научное учреждение «Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии»

Автор, ответственный за переписку.
Email: mroumiantseva@yandex.ru
ORCID iD: 0000-0001-5582-6473
SPIN-код: 5470-9527
Scopus Author ID: 6506571716
ResearcherId: G-3628-2016

к.б.н., в.н.с.-зав.лаб., лаб. генетики и селекции микроорганизмов

196608, Санкт-Петербург, Пушкин-8, ш. Подбельского д. 3

Список литературы

  1. Young JP, Crossman LC, Johnston AW, et al. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol. 2006;7(4):R34. https://doi.org/10. 1186/gb-2006-7-4-r34.
  2. Шестаков С.В. Как происходит и чем лимитируется горизонтальный перенос генов у бактерий // Экологическая генетика. – 2007. – Т. 5. – № 2. – С. 12–24. [Shestakov SV. How does the horizontal gene transfer in bacteria occur and than is it tied up. Ecological genetics. 2007;5(2):12-24. (In Russ.)]. https://doi.org/10. 17816/ecogen5212-24.
  3. Равин Н.В., Шестаков С.В. Геном прокариот // Вавиловский журнал генетики и селекции. – 2013. – Т. 17. – № 4–2. – С. 972–984. [Ravin NV, Shestakov SV. The genome of prokaryotes. Vavilov journal of genetics and breeding. 2013;17(4-2):972-984. (In Russ.)]
  4. Mauchline TH, Hayat R, Roberts R, et al. Assessment of core and accessory genetic variation in Rhizobium leguminosarum symbiovar trifolii strains from diverse locations and host plants using PCR-based methods. Lett Appl Microbiol. 2014;59(2):238-246. https://doi.org/10. 1111/lam.12270.
  5. Тихонович И.А., Андронов Е.Е., Борисов А.Ю., и др. Принцип дополнительности геномов в расширении адаптационного потенциала растений // Генетика. – 2015. – Т. 51. – № 9. – С. 973–990. [Tikhonovich IA, Andronov EE, Borisov AY, et al. The principle of genome complementarity in the enhancement of plant adaptive capacities. Russian Journal of Genetics. 2015;51(9):831-846. (In Russ.)]. https://doi.org/10. 7868/S001667581509012X.
  6. Chidebe IN, Jaiswal SK, Dakora FD. Distribution and phylogeny of microsymbionts associated with cowpea (Vigna unguiculata) nodulation in three agroecological regions of Mozambique. Appl Environ Microbiol. 2018;84(2). pii:e01712-17. https://doi.org/10. 1128/AEM.01712-17.
  7. Jiao J, Ni M, Zhang B, et al. Coordinated regulation of core and accessory genes in the multipartite genome of Sinorhizobium fredii. PLoS Genet. 2018;14(5):e1007428. https://doi.org/10. 1371/journal.pgen.1007428.
  8. Boussau B, Karlberg EO, Frank AC, et al. Computational inference of scenarios for alpha-proteobacterial genome evolution. Proc Natl Acad Sci USA. 2004;101(26):9722-9727. https://doi.org/10. 1073/pnas.0400975101.
  9. Wang X, Liu D, Luo Y, et al. Comparative analysis of Rhizobial chromosomes and plasmids to estimate their evolutionary relationships. Plasmid. 2018;96-97:13-24. https://doi.org/10. 1016/j.plasmid.2018. 03. 001.
  10. Young JP, Wexler M. Sym plasmid and chromosomal genotypes are correlated in field populations of Rhizobium leguminosarum. J Gen Microbiol. 1988;134:2731-9. https://doi.org/10. 1099/00221287-134-10-2731.
  11. Stefan A, van Cauwenberghe J, Rosu CM, et al. Genetic diversity and structure of Rhizobium leguminosarum populations associated with clover plants are influenced by local environmental variables. Syst Appl Microbiol. 2018;41(3):251-259. https://doi.org/10. 1016/j.syapm.2018. 01. 007.
  12. Van Berkum P, Badri Y, Elia P, et al. Chromosomal and symbiotic relationships of rhizobia nodulating Medicago truncatula and M. laciniata. Appl Environ Microbiol. 2007;73(23):7597-7604. https://doi.org/10. 1128/AEM.01046-07.
  13. Проворов Н.А., Андронов Е.Е., Онищук О.П., и др. Генетическая структура интродуцированных и местных популяций Rhizobium leguminosarum в системах «растения–почва» // Микробиология. – 2012. – Т. 81. – № 2. – С. 244–253. [Provorov NA, Andronov EE, Onishchuk OP, et al. Genetic structure of the introduced and local populations of Rhizobioum leguminosarum in plant-soil systems. Microbiology. 2012;81(2):224-232. (In Russ.)]
  14. Laguerre G, Mavingui P, Allard M-R, et al. Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl Environ Microbiol. 1996;62(6):2029-2036.
  15. Guo XW, Zhang XX, Zhang ZM, Li FD. Characterization of Astragalus sinicus rhizobia by restriction fragment length polymorphism analysis of chromosomal and nodulation genes regions. Curr Microbiol. 1999;39(6):358-364. https://doi.org/10. 1007/s002849900472.
  16. Efrose RC, Rosu CM, Stedel C, et al. Molecular diversity and phylogeny of indigenous Rhizobium leguminosarum strains associated with Trifolium repens plants in Romania. Antonie Van Leeuwenhoek. 2018;111(1):135-153. https://doi.org/10. 1007/s10482-017-0934-3.
  17. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 2015;43:D261-269. https://doi.org/10. 1093/nar/gku1223.
  18. Zhang YM, Tian CF, Sui XH, et al. Robust markers reflecting phylogeny and taxonomy of Rhizobia. PLoS One. 2012;7(9):e44936. https://doi.org/10. 1371/journal.pone.0044936.
  19. Guo HJ, Wang ET, Zhang XX, et al. Replicon-dependent differentiation of symbiosis-related genes in Sinorhizobium strains nodulating Glycine max. Appl Environ Microbiol. 2014;80(4):1245-1255. https://doi.org/10. 1128/AEM.03037-13.
  20. Alexandre A, Laranjo M, Young JP, Oliveira S. dnaJ is a useful phylogenetic marker for alphaproteobacteria. Int J Syst Evol Microbiol. 2008;58(12):2839-2849. https://doi.org/10. 1099/ijs.0. 2008/001636-0.
  21. Biondi EG, Pilli E, Giuntini E, et al. Genetic relationship of Sinorhizobium meliloti and Sinorhizobium medicae strains isolated from Caucasian region. FEMS Microbiol Lett. 2003;220(2):207-213. https://doi.org/10. 1016/S0378-1097(03)00098-3.
  22. Escobar-Páramo P, Sabbagh A, Darlu P, et al. Decreasing the effects of horizontal gene transfer on bacterial phylogeny: the Escherichia coli case study. Mol Phylogenet Evol. 2004;30(1):243-250. https://doi.org/10. 1016/S1055-7903(03)00181-7.
  23. Matzke NJ. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst Biol. 2014;63(6):951-970. https://doi.org/10. 1093/sysbio/syu056.
  24. Dresler-Nurmi A, Fewer DP, Räsänen LA, Lindström K. The diversity and evolution of Rhizobia. In: Pawlowski K. (eds). Prokaryotic symbionts in plants. Springer-Verlag; 2009. P. 3-41.
  25. Tounsi-Hammami S, Le Roux C, Dhane-Fitouri S, et al. Genetic diversity of rhizobia associated with root nodules of white lupin (Lupinus albus L.) in Tunisian calcareous soils. Syst Appl Microbiol. 2019;42(4):448-456. https://doi.org/10. 1016/j.syapm.2019. 04. 002.
  26. Escobar-Páramo P, Clermont O, Blanc-Potard AB, et al. Specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli. Mol Biol Evol. 2004;21(6):1085-1094. https://doi.org/10. 1093/molbev/msh118.
  27. Проворов Н.А. Симбиогенез как эволюция генетических систем открытого типа // Генетика. – 2018. – Т. 54. – № 8. – С. 879–889. [Provorov NA. Symbiogenesis as evolution of open genetic systems. Russian Journal of Genetics. 2018;54(8):888-896. (In Russ.)]. https://doi.org/10. 1134/S0016675818080106.
  28. Румянцева М.Л., Мунтян В.С., Черкасова М.Е., и др. Геномные острова штамма Sinorhizobium meliloti Rm1021 — азотфиксирующего симбионта люцерны // Генетика. – 2018. – Т. 54. – № 7. – С. 745-756. [Roumiantseva ML, Muntyan VS, Cherkasova ME, et al. Genomic islands in Sinorhizobium meliloti Rm1021, nitrogen-fixing symbiont of alfalfa. Russian Journal of Genetics. 2018;54(7):759-769. (In Russ.)]. https://doi.org/10. 1134/S0016675818070135.
  29. Barcellos FG, Menna P, da Silva Batista JS, Hungria M. Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Appl Environ Microbiol. 2007;73(8):2635-2643. https://doi.org/10. 1128/AEM.01823-06.
  30. Wielbo J. Rhizobial communities in symbiosis with legumes: genetic diversity, competition and interactions with host plants. Cent Eur J Biol. 2012;7(3):363-372. https://doi.org/10. 2478/s11535-012-0032-5.
  31. Румянцева М.Л., Мунтян В.С., Черкасова М.Е., и др. Сравнительный анализ геномных характеристик у референтных штаммов Sinorhizobium meliloti — симбионтов люцерны // Сельскохозяйственная биология. – 2017. – Т. 52. – № 5. – С. 928-939. [Roumiantseva ML, Muntyan VS, Cherkasova ME, et al. A comparative analysis of genomic characters of reference Sinorhizobium meliloti strains, the alfalfa symbionts. Agricultural Biology. 2017;52(5):928-939. (In Russ.)]. https://doi.org/10. 15389/agrobiology.2017. 5. 928rus.
  32. Che D, Hasan MS, Chen B. Identifying pathogenicity islands in bacterial pathogenomics using computational approaches. Pathogens. 2014;3(1):36-56. https://doi.org/10. 3390/pathogens3010036.
  33. Krogh TJ, Møller-Jensen J, Kaleta C. Impact of chromosomal architecture on the function and evolution of bacterial genomes. Front Microbiol. 2018;9:2019. https://doi.org/10. 3389/fmicb.2018. 02019.
  34. Dobrindt U, Hochhut B, Hentschel U, Hacker J. Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol. 2004;2(5):414-424. https://doi.org/10. 1038/nrmicro884.
  35. Juhas M, van der Meer JR, Gaillard M, et al. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev. 2009;33(2):376-393. https://doi.org/10. 1111/j.1574-6976. 2008. 00136. x.
  36. Мунтян В.С., Черкасова М.Е., Андронов Е.Е., и др. Встречаемость островов в геномах природных штаммов Sinorhizobium meliloti // Генетика. – 2016. – Т. 52. – № 10. – С. 1126–1133. [Muntyan VS, Cherkasova ME, Andronov EE, et al. Occurrence of islands in genomes of Sinorhizobium meliloti native isolates. Russian Journal of Genetics. 2016;52(10):1015-1022. (In Russ.)]. https://doi.org/10. 7868/S0016675816080105.
  37. Hudson CM, Lau BY, Williams KP. Islander: a database of precisely mapped genomic islands in tRNA and tmRNA genes. Nucleic Acids Res. 2015;43 (Database issue):D48-53. https://doi.org/10. 1093/nar/gku1072.
  38. Румянцева М.Л., Симаров Б.В., Онищук О.П., и др. Биологическое разнообразие клубеньковых бактерий в экосистемах и агроценозах. Теоретические основы и методы / Под ред. М.Л. Румянцевой, Б.В. Симарова. – СПб.; Пушкин: Инновационный центр защиты растений, 2011. – 104 с. [Roumiantseva ML, Simarov BV, Onishchuk OP, et al. Biologicheskoe raznoobrazie kluben’kovykh bakterii v ekosistemakkh i agrotsenozakh. Teoreticheskie osnovy i metody. Ed. by M.L. Rumyantseva, B.V. Simarov. Saint Petersburg; Pushkin: Innovatsionnyi tsentr zashchity rastenii; 2011. 104 p. (In Russ.)]
  39. Румянцева М.Л., Мунтян В.С., Менгони А., Симаров Б.В. ITS-полиморфизм солеустойчивых и солечувствительных природных штаммов Sinorhizobium meliloti — симбионтов люцерны, донника и пажитника // Генетика. – 2014. – Т. 50. – № 4. – С. 400–412. [Roumiantseva ML, Muntian VS, Mengoni A, Simarov BV. ITS-polymorphism of salt-tolerant and salt-sensitive native isolates of Sinorhizoblum meliloti – symbionts of alfalfa, clover and fenugreek plants. Russian Journal of Genetics. 2014;50(4):348-359. (In Russ.)]. https://doi.org/10. 7868/S0016675814040109.
  40. Румянцева М.Л., Мунтян В.С. Клубеньковые бактерии Sinorhizobium meliloti: солеустойчивость и ее генетическая детерминированность // Микробиология. – 2015. – Т. 84. – № 3. – С. 263–280. [Roumiantseva ML, Muntyan VS. Root nodule bacteria Sinorhizobium meliloti: tolerance to salinity and bacterial genetic determinants. Microbiology. 2015;84(3):303-318. (In Russ.)]. https://doi.org/10. 7868/S0026365615030179.
  41. Демидёнок О.И., Гончаренко А.В. Системы токсин-антитоксин бактерий и перспективы их использования в медицине (обзор) // Прикладная биохимия и микробиология. – 2013. – Т. 49. – № 6. – С. 539–546. [Demidenok OI, Goncharenko AV. Bacterial toxin-antitoxin systems and perspectives for their application in medicine. Applied Biochemistry and Microbiology. 2013;49(6):535-541. (In Russ.)]. https://doi.org/10. 7868/S055510991306007X.
  42. Rannala B, Qiu W-G, Dykhuizen DE. Methods for estimating gene frequencies and detecting selection in bacterial populations. Genetics. 2000;155(2):499-508.
  43. Rasmussen HB. Restriction fragment length polymorphism analysis of PCR-amplified fragments (PCR-RFLP) and gel electrophoresis – valuable tool for genotyping and genetic fingerprinting. Gel Electrophoresis – Principles and Basics. 2012. P. 315-334. https://doi.org/10. 5772/37724.
  44. Румянцева М.Л., Белова В.С., Онищук О.П., и др. Полиморфизм bet-генов у штаммов Sinorhizobium meliloti из генцентров люцерны // Сельскохозяйственная биология. – 2011. – Т. 46. – № 3. – С. 48–54. [Roumiantseva ML, Belova VS, Onishchouk OP, et al. Polymorphism of bet-genes among Sinorhizobium meliloti isolates native to gene centers of alfalfa. Agricultural Biology. 2011;46(3):48-54. (In Russ.)]
  45. Маниатис Т., Фрич Э., Сэмбрук Д. Методы генетической инженерии. Молекулярное клонирование / Пер. с англ. под ред. А.А. Баева, К.Г. Скрябина. – М.: Мир, 1984. – 479 с. [Maniatis T, Fritch EE, Sambrook J. Molecular cloning: a laboratory manual. Translated from English ed. by A.A. Baev, K.G. Skryabin. Moscow: Mir; 1984. 479 р. (In Russ.)]
  46. Hammer O, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 2001;4(1):1-9.
  47. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978;89(3):583-590.
  48. Excoffier L, Lischer HE. Arlequin suite ver 3. 5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10(3):564-567. https://doi.org/10. 1111/j.1755-0998. 2010. 02847. x.
  49. Проворов Н.А., Андронов Е.Е., Онищук О.П. Формы естественного отбора, определяющего геномную эволюцию клубеньковых бактерий // Генетика. – 2017. – Т. 53. – № 4. – С. 401–410. [Provorov NA, Andronov EE, Onishchuk OP. Forms of natural selection controlling the genomic evolution in nodule bacteria. Russian Journal of Genetics. 2017;53(4):411-419. (In Russ.)]. https://doi.org/10. 7868/S0016675817040129.
  50. Levin BR. Frequency dependent selection in bacterial populations. Philos Trans R Soc Lond B Biol Sci. 1988;319(1196):459-472. https://doi.org/10. 1098/rstb.1988. 0059.
  51. Румянцева М.Л., Саксаганская А.С., Мунтян В.С., и др. Структурный полиморфизм генов вирулентности и солеустойчивости Sinorhizobium meliloti // Генетика. – 2018. – Т. 54. – № 5. – С. 524–534. [Roumiantseva ML, Saksaganskaia AS, Muntyan VS, et al. Structural polymorphism of Sinorhizobium meliloti genes related to virulence and salt tolerance. Russian Journal of Genetics. 2018;54(5):525-535. (In Russ.)]. https://doi.org/10. 7868/S001667581805003X.
  52. Румянцева М.Л., Онищук О.П., Белова В.С., и др. Полиморфизм штаммов Sinorhizobium meliloti, выделенных в центрах разнообразия люцерны, различающихся по почвенно-климатическим условиям // Экологическая генетика. – 2009. – Т. 7. – № 2. – С. 19–25. [Roumiantseva ML, Onischuk OP, Belova VS, et al. Polymorphism among Sinorhizobium meliloti isolates native to the origins of alfalfa diversity differed in soil-climate characteristics. Ecological genetics. 2009;7(2):19-25. (In Russ.)]. https://doi.org/10. 17816/ecogen7219-25.
  53. Palmer KM, Young JP. Higher diversity of Rhizobium leguminosarum biovar viciae populations in arable soils than in grass soils. Appl Environ Microbiol. 2000;66(6):2445-2450. https://doi.org/10. 1128/AEM.66. 6. 2445-2450. 2000.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема локализации коровых маркерных последовательностей и геномных островов на хромосоме референс-штамма Sinorhizobium meliloti Rm1021: oriC — ориджин репликации; — коровые маркеры; rrn (1-3) — рибосомальные опероны, содержащие ITS-последовательности; — геномные острова

Скачать (41KB)
3. Рис. 2. Встречаемость ПДРФ-типов маркеров M-I (а), M-II (б) и M-III (в) у штаммов S. meliloti: а, b, c, w, z — ПДРФ-типы, х — группа, объединяющая уникальные дивергентные ПДРФ-типы; R — штаммы солеустойчивого фенотипа; S — штаммы солечувствительного фенотипа; К — штаммы, выделенные из клубеньков; П — штаммы, выделенные из почв; СКГ — Кавказский генцентр; ПАГ — Приаральский центр разнообразия люцерн; АЦ — агроценозы

Скачать (200KB)
4. Рис. 3. Встречаемость разных хромосомных типов у штаммов S. Meliloti. AI, AII, BI, BII — хромосомные типы (см. текст); остальные обозначения — см. рис. 2

Скачать (146KB)
5. Рис. 4. Встречаемость геномных островов в разных хромосомных типах S. meliloti: а — частота встречаемости одного, двух или трех островов в соответствующих хромосомных типах; б — частота встречаемости каждого из островов: Sme19T, Sme21T, Sme80S в соответствующих хромосомных типах; AI, AII, BI, BII — хромосомные типы (см. рис. 3)

Скачать (103KB)

© Черкасова М.Е., Мунтян В.С., Саксаганская А.С., Симаров Б.В., Румянцева М.Л., 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах