Эндофитные микроорганизмы в фундаментальных исследованиях и сельском хозяйстве

Обложка

Цитировать

Полный текст

Аннотация

Повсеместное распространение эндофитных микроорганизмов является общепризнанным фактом, а открывающиеся возможности использования их в сельском хозяйстве вызывают огромный интерес к ним со стороны научного сообщества. В отличие от ризосферных (населяющих поверхность корней) и филлосферных (колонизирующих надземные органы) представителей растительно-микробного сообщества, эндофиты способны вступать с хозяином в более тесные взаимоотношения, в некоторых случаях сильно влияя на его фенотип и в целом принося определенную пользу, не формируя, однако, специфических структур, таких как клубеньки, в случае бобово-ризобиального симбиоза. Выполняя целый набор функций, среди которых модуляция уровней фитогормонов, продукция витаминов и улучшение снабжения питательными веществами, эндофиты могут служить основой для биопрепаратов, что позволит в перспективе снизить необходимость использования минеральных удобрений в практике сельского хозяйства и вследствие этого негативное влияние последних на плодородие почв, биоразнообразие и здоровье человека. В этом обзоре рассмотрены такие аспекты растительно-эндофитного симбиоза, как биоразнообразие эндофитов бобовых и небобовых культур, экология данных микроорганизмов, вопросы их функциональной значимости, распространенные способы изучения, а также возможности их применения в сельском хозяйстве.

Об авторах

Екатерина Николаевна Васильева

ФГБОУ ВО «Санкт-Петербургский государственный университет»; ФГБНУ «Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии»

Автор, ответственный за переписку.
Email: evasilieva@arriam.ru

студент, кафедра микробиологии, биологический факультет; техник 1-й категории, лаборатория генетики растительно-микробных взаимодействий

Россия, 199034, г. Санкт-Петербург, Университетская наб., д.7/9; 196608, г. Санкт-Петербург, Пушкин 8, ш. Подбельского, д.3

Гульнар Асановна Ахтемова

ФГБНУ «Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии»

Email: ahgulya@yandex.ru

канд. биол. наук, старший научный сотрудник, лаборатория генетики растительно-микробных взаимодействий

Россия, 196608, г. Санкт-Петербург, Пушкин 8, ш. Подбельского, д.3

Владимир Александрович Жуков

ФГБНУ «Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии»

Email: vzhukov@arriam.ru

канд. биол. наук, заведующий лабораторией, лаборатория генетики растительно-микробных взаимодействий

Россия, 196608, г. Санкт-Петербург, Пушкин 8, ш. Подбельского, д.3

Игорь Анатольевич Тихонович

ФГБОУ ВО «Санкт-Петербургский государственный университет»; ФГБНУ «Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии»

Email: arriam2008@yandex.ru

д-р биол. наук, научный руководитель института, академик РАН; декан, биологический факультет

Россия, 199034, г. Санкт-Петербург, Университетская наб., д.7/9; 196608, г. Санкт-Петербург, Пушкин 8, ш. Подбельского, д.3

Список литературы

  1. Partida-Martinez LP, Heil M. The microbe-free plant: fact or artifact? Front Plant Sci. 2011;2:100. https://doi/org/10.3389/fpls.2011.00100.
  2. Liu H, Carvalhais LC, Crawford M, et al. Inner Plant values: diversity, colonization and benefits from endophytic bacteria. Front Microbiol. 2017;8:2552. https://doi/org/10.3389/fmicb.2017.02552.
  3. Clay K. Fungal endophyte symbiosis and plant diversity in successional fields. Science. 1999;285(5434):1742-1744. https://doi/org/ 10.1126/science.285.5434.1742.
  4. Lindow SE, Brandl MT. Microbiology of the phyllosphere. Appl Environ Microbiol. 2003;69(4): 1875-83. https://doi/org/10.1128/AEM.69.4.1875-1883.2003.
  5. Шапошников А.И., Белимов А.А., Кравченко Л.В., Виванко Д.М. Взаимодействие ризосферных бактерий с растениями: механизмы образования и факторы эффективности ассоциативных симбиозов // Сельскохозяйственная биология. – 2011. – № 3. – С. 16–22. [Shaposhnikov AI, Belimov AA, Kravchenko LV, Vivanko DM. Interaction of rhizosphere bacteria with plants: mechanisms of formation and factors of efficiency in associative symbiosis (review). Agricultural Biology. 2011;(3):16-22. (In Russ.)]
  6. Умаров М.М. Ассоциативная азотфиксация. – М.: Изд-во Московского гос. ун-та, 1986. – 136 с. [Umarov MM. Assotsiativnaya azotfiksatsiya. Moscow: Izd-vo Moskovskogo Gosudarstvennogo Universiteta; 1986. 136 p. (In Russ.)]
  7. Штарк О.Ю., Жуков В.А., Сулима А.С., и др. Перспективы использования многокомпонентных симбиотических систем бобовых // Экологическая генетика. – 2015. – Т. 13. – № 1. – С. 33–46. [Shtark OY, Zhukov VA, Sulima AS, et al. Prospects for the use of multi-component symbiotic systems of the Legumes. Ecological Genetics 2015;13(1): 33-46. (In Russ.)]. https://doi/org/10.17816/ecogen13133-46.
  8. Bais HP, Weir TL, Perry LG, et al. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol. 2006;57:233-266. https://doi/org/10.1146/annurev.arplant.57.032905.105159.
  9. Цавкелова Е.Л., Климова С.Ю., Чердынцева Т.Л., Нетрусов Л.И. Микроорганизмы-продуценты стимуляторов роста растений и их практическое применение (обзор) // Прикладная биохимия и микробиология. – 2006. – T. 42. – № 2. – C. 133–143. [Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI. Microbial producers of plant growth stimulators and their practical use: a review. Applied Biochemistry and Microbiology 2006;42(2):133-143. (In Russ.)]
  10. Щербаков А.В., Кузьмина Е.Ю., Мунтян А.Н., и др. Эндофитные бактерии сфагновых мхов как перспективные объекты сельскохозяйственной микробиологии // Микробиология. – 2013. – Т. 82. – № 3. – С. 312–322. [Shcherbakov AV, Bragina AV, Kuzmina EY, et al. Endophytic bacteria of Sphagnum mosses as promising objects of agricultural microbio logy. Microbiology 2013;82(3):312-322. (In Russ.)]
  11. Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda Mdel C, Glick BR. Plant growth-promoting bacterial endophytes. Microbiol Res. 2016;183:92-99. https://doi/org/10.1016/j.micres.2015.11.008.
  12. Rolli E, Marasco R, Vigani G, et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol. 2015;17(2):316-331. https://doi/org/10.1111/1462-2920.12439.
  13. Ali S, Duan J, Charles TC, Glick BR. A bioinforma tics approach to the determination of genes involved in endophytic behavior in Burkholderia spp. J Theor Biol. 2014;343:193-198. https://doi/org/10.1016/j.jtbi.2013.10.007.
  14. Egamberdieva D, Wirth S, Jabborova D, et al. Coor dination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture. J Plant In teract. 2017;12(1):100-107. https://doi/org/10.1080/ 17429145.2017.1294212.
  15. Su F, Jacquard C, Villaume S, et al. Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. Front Plant Sci. 2015;6:810. https://doi/org/10.3389/fpls.2015.00810.
  16. Mercado-Blanco J, Lugtenberg B. Biotechnological applications of bacterial endophytes. Curr Biotechnol. 2014;3(1):60-75. https://doi/org/10.2174/22115501113026660038.
  17. Zhang HW, Song YC, Tan RX. Biology and chemistry of endophytes. Nat Prod Rep. 2006;23(5):753-771. https://doi/org/10.1039/b609472b.
  18. Beltran-Garcia MJ, White JF, Jr., Prado FM, et al. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria. Sci Rep. 2014;4:6938. https://doi/org/10.1038/srep06938.
  19. Compant S, Duffy B, Nowak J, et al. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol. 2005;71(9):4951-9. https://doi/org/10.1128/AEM.71.9.4951-4959.2005.
  20. Чеботарь В.К., Макарова Н.М., Шапошников А.И., Кравченко Л.В. Антифунгальные и фитостимулирующие свойства ризосферного штамма Bacillus subtilis ч-13 продуцента биопрепаратов // Прикладная биохимия и микробиология. – 2009. – T. 45. – № 4. – C. 465–469.[Chebotar VK, Makarova NM, Shaposhnikov AI, Kravchenko LV. Antifungal and phytostimulating characteristics of Bacillus subtilis Ch-13 rhizospheric strain, producer of bioprepations. Applied Biochemistry and Microbiology 2009;45(4):465-469. (In Russ.)]
  21. Чеботарь В.К., Заплаткин А.Н., Щербаков А.В., и др. Микробные препараты на основе эндофитных и ризобактерий, которые перспективны для повышения продуктивности и эффективности использования минеральных удобрений у ярового ячменя (Hordeum vulgare L.) и овощных культур // Сельскохозяйственная биология. – 2016. – Т. 51 — № 3. – С. 335–342. [Chebotar VK, Zaplatkin AN, Shcherbakov AV, et al. Microbial preparations on the basis of endophytic and rhizobacteria to increase the productivity in vegetable crops and spring barley (Hordeum vulgare L.), and the mineral fertilizer use efficiency. Agricultural biology. 2016;51(3):335-342. (In Russ.)]
  22. Sutton MA, Howard CM, Erisman JW, et al. The challenge to integrate nitrogen science and policies: the European Nitrogen Assessment approach. In: The European Nitrogen Assessment: Sources, Effects and Policy Perspectives. Ed. by M.A. Sutton, C.M. Howard, J.W. Erisman, et al. Cambridge: Cambridge University Press; 2011. P. 82-96. https://doi/org/10.1017/CBO9780511976988.008.
  23. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW. Bacterial endophytes in agricultural crops. Can J Microbiol. 1997;43(10):895-914. https://doi/org/10.1139/m97-131.
  24. Rosenblueth M, Martinez-Romero E. Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact. 2006;19(8):827-837. https://doi/org/10.1094/MPMI-19-0827.
  25. Posada F, Vega FE. Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia. 2005;97(6):1195-1200. https://doi/org/10.3852/mycologia.97.6.1195.
  26. Franks A, Ryan PR, Abbas A, et al. Molecular tools for studying plant growth-promoting rhizobacteria (PGPR): Molecular techniques for soil and rhizosphere microorganisms. Wallingford: CABI Publi shing; 2006.
  27. Zinniel DK, Lambrecht P, Harris NB, et al. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 2002;68(5):2198-2208. https://doi/org/10.1128/AEM.68.5.2198-2208.2002.
  28. Sun L, Qiu F, Zhang X, et al. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol. 2008;55(3):415-424. https://doi/org/10.1007/s00248-007-9287-1.
  29. Ulrich K, Stauber T, Ewald D. Paenibacillus — A predominant endophytic bacterium colonising tissue cultures of woody plants. Plant Cell Tissue Organ Cult. 2008;93(3):347-351. https://doi/org/10.1007/s11240-008-9367-z.
  30. Tiwari K, Thakur HK. Diversity and molecular characterization of dominant Bacillus amyloliquefaciens (JNU-001) endophytic bacterial strains isolated from native Neem varieties of Sanganer region of Rajasthan. J Biodivers Biopros Dev. 2014;1(1):1000115. https://doi/org/10.4172/ijbbd.1000115.
  31. Narula S, Anand RC, Dudeja SS, Kumar V. Molecular Diversity of Root and Nodule Endophytic Bacteria from Field Pea (Pisum Sativum L.). Legume Res – Int J. 2013;36(4):344-350.
  32. Compant S, Mitter B, Colli-Mull JG, et al. Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol. 2011;62(1):188-197. https://doi/org/10.1007/s00248-011-9883-y.
  33. Miche L, Balandreau J. Effects of rice seed surface sterilization with hypochlorite on inoculated Burkholderia vietnamiensis. Appl Environ Microbiol. 2001;67(7):3046-3052. https://doi/org/10.1128/AEM.67.7.3046-3052.2001.
  34. Lodewyckx C, Vangronsveld J, Porteous F, et al. Endophytic Bacteria and Their Potential Applications. Crit Rev Plant Sci 2002;21(6):583-606. https://doi/org/10.1080/0735-260291044377.
  35. Sessitsch A, Hardoim P, Doring J, et al. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact. 2012;25(1):28-36. https://doi/org/10.1094/MPMI-08-11-0204.
  36. Edwards J, Johnson C, Santos-Medellin C, et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA. 2015;112(8):E911-920. https://doi/org/10.1073/pnas.1414592112.
  37. Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem. 2010;42(5):669-678. https://doi/org/10.1016/j.soilbio.2009.11.024.
  38. Chi F, Shen SH, Cheng HP, et al. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth phy siology. Appl Environ Microbiol. 2005;71(11):7271-8. https://doi/org/10.1128/AEM.71.11.7271-7278.2005.
  39. Costa LE de O, de Queiroz MV, Borges AC, et al. Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz J Microbiol. 2012;43(4):1562-1575. https://doi/org/10.1590/S1517-83822012000400041.
  40. Marques JM, da Silva TF, Vollú RE, et al. Bacterial endophytes of sweet potato tuberous roots affected by the plant genotype and growth stage. Appl Soil Ecol. 2015;96:273-281. https://doi/org/10.1016/j.apsoil.2015.08.020.
  41. Ferrando L, Fernandez Scavino A. Strong shift in the diazotrophic endophytic bacterial community inha biting rice (Oryza sativa) plants after flooding. FEMS Microbiol Ecol. 2015;91(9): fiv104. https://doi/org/10.1093/femsec/fiv104.
  42. Ren G, Zhu C, Alam MS, et al. Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant Soil. 2015;392(1-2):27-44. https://doi/org/10.1007/s11104-015-2503-8.
  43. Gottel NR, Castro HF, Kerley M, et al. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol. 2011;77(17):5934-44. https://doi/org/10.1128/AEM.05255-11.
  44. Bulgarelli D, Rott M, Schlaeppi K, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488(7409):91-95. https://doi/org/10.1038/nature11336.
  45. Lundberg DS, Lebeis SL, Paredes SH, et al. Defining the core Arabidopsis thaliana root microbio me. Nature. 2012;488(7409):86-90. https://doi/org/10.1038/nature11237.
  46. Gagné S, Rıchard C, Rousseau H, Antoun H. Xylem-residing bacteria in alfalfa roots. Can J Microbiol. 1987;33(11):996-1000. https://doi/org/10.1139/m87-175.
  47. Hung PQ, Annapurna K. Isolation and characterization of endophytic bacteria in soybean (Glycine Sp.). Omonrice. 2004;12:92-101.
  48. Elvira-Recuenco M, van Vuurde JW. Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can J Microbiol 2000;46(11):1036-1041. https://doi/org/10.1139/w00-098.
  49. Burbano CS, Gronemeyer JL, Hurek T, Reinhold-Hurek B. Microbial community structure and functional diversity of nitrogen-fixing bacteria associated with Colophospermum mopane. FEMS Microbiol Ecol. 2015;91(4). https://doi/org/10.1093/femsec/fiv030.
  50. Zgadzaj R, James EK, Kelly S, et al. A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genet. 2015;11(6): e1005280. https://doi/org/10.1371/journal.pgen.1005280.
  51. Lopez-Lopez A, Rogel MA, Ormeno-Orrillo E, et al. Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol. 2010;33(6):322-7. https://doi/org/10.1016/j.syapm.2010.07.005.
  52. Sturz AV, Christie BR, Matheson BG, Nowak J. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils. 1997;25(1):13-19. https://doi/org/10.1007/s003740050273.
  53. Selvakumar G, Kundu S, Gupta AD, et al. Isolation and characterization of nonrhizobial plant growth promoting bacteria from nodules of Kudzu (Pueraria thunbergiana) and their effect on wheat seedling growth. Curr Microbiol. 2008;56(2):134-139. https://doi/org/10.1007/s00284-007-9062-z.
  54. Tariq M, Hameed S, Yasmeen T, Ali A. Non-rhizobial bacteria for improved nodulation and grain yield of mung bean [Vigna radiata (L.) Wilczek]. Afr J Biotechnol 2012;11:15012-15019. https://doi/org/10.5897/AJB11.3438.
  55. Гарипова С.Р., Гарифуллина Д.В., Маркова О.В., и др. Комплексная биологическая активность in vitro эндофитных бактерий, выделенных из клубеньков гороха и фасоли // Известия Уфимского научного центра Российской академии наук. – 2015. – № 4–1. – С. 25–28. [Garipova SR, Garifullina DV, Markova OV, et al. Complex biological activity in vitro of endophytic bacteria isolated from pea and bean nodules. Izvestiya Ufimskogo Nauchnogo Tsentra Rossiyskoy Akademii Nauk. 2015;(4-1):25-28. (In Russ.)]
  56. Tariq M, Hameed S, Yasmeen T, et al. Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World J Microbiol Biotechnol. 2014;30(2):719-725. https://doi/org/10.1007/s11274-013-1488-9.
  57. Carro L, Sproer C, Alonso P, Trujillo ME. Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol. 2012;35(2):73-80. https://doi/org/10.1016/j.syapm.2011.11.003.
  58. Carro L, Riesco R, Sproer C, Trujillo ME. Micromonospora luteifusca sp. nov. isolated from cultivated Pisum sativum. Syst Appl Microbiol. 2016;39(4):237-42. https://doi/org/10.1016/j.syapm.2016.04.003.
  59. Iniguez AL, Dong Y, Carter HD, et al. Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant Microbe Interact. 2005;18(2):169-78. https://doi/org/10.1094/MPMI-18-0169.
  60. Bahroun A, Jousset A, Mhamdi R, et al. Anti-fungal activity of bacterial endophytes associated with legumes against Fusarium solani: Assessment of fungi soil suppressiveness and plant protection induction. Appl Soil Ecol. 2018;124:131-140. https://doi/org/10.1016/j.apsoil.2017.10.025.
  61. Iqbal A, Arshad M, Hashmi I, et al. Biodegradation of phenol and benzene by endophytic bacterial strains isolated from refinery wastewater-fed Cannabis sativa. Environ Technol. 2018;39(13):1705-1714. https://doi/org/10.1080/09593330.2017.1337232.
  62. Orozco-Mosqueda MDC, Rocha-Granados MDC, Glick BR, Santoyo G. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res. 2018;208:25-31. https://doi/org/10.1016/j.micres.2018.01.005.
  63. Wicaksono WA, Jones EE, Casonato S, et al. Biological control of Pseudomonas syringae pv. acti nidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant. Biol Control. 2018;116:103-112. https://doi/org/10.1016/j.biocontrol.2017.03.003.
  64. Mitter B, Pfaffenbichler N, Flavell R, et al. A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into pro geny seeds. Front Microbiol. 2017;8:11. https://doi/org/10.3389/fmicb.2017.00011.
  65. Gamalero E, Lingua G, Berta G, Lemanceau P. Me thods for studying root colonization by introduced beneficial bacteria. In: Sustainable Agriculture. Ed. by E. Lichtfouse, M. Navarrete, P. Debaeke, et al. Dordrecht: Springer; 2009. P. 601-615. https://doi/org/10.1007/978-90-481-2666-8_37.
  66. Chanway C. Bacterial endophytes: ecological and practical implications. Sydowia. 1998;50:149-170.
  67. Truyens S, Weyens N, Cuypers A, Vangronsveld J. Bacterial seed endophytes: Genera, vertical transmission and interaction with plants. Environ Microbiol Rep. 2014;7(1):40-50. https://doi/org/10.1111/1758-2229.12181.
  68. Frank AC, Saldierna Guzman JP, Shay JE. Transmission of bacterial endophytes. Microorganisms. 2017;5(4). https://doi/org/10.3390/microorganisms5040070.
  69. Herre E, Knowlton N, Mueller U, Rehner S. The evolution of mutualisms: exploriong the paths between conflict and cooperation. Trends Ecol Evol. 1999;14(2):49-53. https://doi/org/10.1016/S0169-5347(98)01529-8.
  70. Moran NA. Symbiosis. Curr Biol. 2006;16(20): R866-871. https://doi/org/10.1016/j.cub.2006.09.019.
  71. Hardoim PR, Hardoim CC, van Overbeek LS, van Elsas JD. Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One. 2012;7(2):e30438. https://doi/org/10.1371/journal.pone.0030438.
  72. Ma Y, Rajkumar M, Luo Y, Freitas H. Inoculation of endophytic bacteria on host and non-host plants — effects on plant growth and Ni uptake. J Hazard Mater. 2011;195:230-237. https://doi/org/10.1016/j.jhazmat.2011.08.034.
  73. Khan Z, Guelich G, Phan H, et al. Bacterial and yeast endophytes from poplar and willow promote growth in crop plants and grasses. ISRN Agron. 2012;2012:1-11. https://doi/org/10.5402/2012/890280.
  74. Sprent JI, de Faria SM. Mechanisms of infection of plants by nitrogen fixing organisms. Plant and Soil. 1988;110(2):157-165. https://doi/org/10.1007/bf02226795.
  75. Menpara D, Chanda S. Endophytic bacteria-unexplored reservoir of antimicrobials for combating microbial pathogens. In: Microbial pathogens and strategies for combating them: science, technology and education. Ed. by A. Méndez-Vilas. Formatex Research Center; 2013. P. 1095-1103.
  76. Sharrock KR, Parkes SL, Jack HK, Rees-George J, Hawthorne BT. Involvement of bacterial endophytes in storage rots of buttercup squash (Cucurbita maxima d. hybrid ‘delica’). N Z J Crop Hortic Sci. 1991;19(2):157-65. https://doi/org/10.1080/01140671.1991.10421794.
  77. Coutinho BG, Licastro D, Mendonca-Previato L, et al. Plant-Influenced gene expression in the rice endophyte Burkholderia kururiensis M130. Mol Plant Microbe Interact. 2015;28(1):10-21. https://doi/org/10.1094/MPMI-07-14-0225-R.
  78. Miche L, Battistoni F, Gemmer S, et al. Upregulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol Plant Microbe Interact. 2006;19(5):502-511. https://doi/org/10.1094/MPMI-19-0502.
  79. White JF, Belanger F, Meyer W, Sullivan RF, Bischoff JF, Lewis EA. Clavicipitalean fungal epibionts and endophytes – development of symbiotic interactions with plants. Symbiosis. 2002;33:201-213.
  80. Berg G, Krechel A, Ditz M, et al. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol. 2005;51(2):215-229. https://doi/org/10.1016/j.femsec.2004.08.006.
  81. Pitzschke A. Developmental Peculiarities and Seed-Borne Endophytes in Quinoa: Omnipresent, Robust Bacilli Contribute to Plant Fitness. Front Microbiol. 2016;7:2. https://doi/org/10.3389/fmicb.2016.00002.
  82. Ambika Manirajan B, Ratering S, Rusch V, et al. Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species-specificity. Environ Microbiol. 2016;18(12): 5161-74. https://doi/org/10.1111/1462-2920.13524.
  83. Madmony A, Chernin L, Pleban S, et al. Enterobacter cloacae, an obligatory endophyte of pollen grains of Mediterranean pines. Folia Microbiol (Praha). 2005;50(3):209-216. https://doi/org/10.1007/BF02931568.
  84. Jojima Y, Mihara Y, Suzuki S, et al. Saccharibacter floricola gen. nov., sp. nov., a novel osmophilic acetic acid bacterium isolated from pollen. Int J Syst Evol Microbiol. 2004;54(Pt 6):2263-2267. https://doi/org/10.1099/ijs.0.02911-0.
  85. Thrall PH, Hochberg ME, Burdon JJ, Bever JD. Coevo lution of symbiotic mutualists and parasites in a community context. Trends Ecol Evol. 2007;22(3):120-6. https://doi/org/10.1016/j.tree.2006.11.007.
  86. Strobel GA. Endophytes as sources of bioactive products. Microbes Infect. 2003;5(6):535-544. https://doi/org/10.1016/S1286-4579(03)00073-X.
  87. Malfanova N, Lugtenberg BJJ, Berg G. Bacterial endophytes: who and where, and what are they doing there? In: Molecular Microbial Ecology of the Rhizosphere. Vol. 1. Ed. by F.J. de Bruijn. Hoboken: John Wiley & Sons, Ltd.; 2013. https://doi/org/10.1002/9781118297674.ch36.
  88. Malfanova N, Kamilova F, Validov S, et al. Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microb Biotechnol. 2011;4(4):523-532. https://doi/org/10.1111/j.1751-7915.2011.00253.x.
  89. Azevedo JL, Maccheroni W, Pereira JO, De Araújo WL. Endophytic microorganisms: A review on insect control and recent advances on tropical plants. Electron J Biotechnol. 2000;3(1):40-65. https://doi/org/10.2225/vol3-issue1-fulltext-4.
  90. Ryan RP, Germaine K, Franks A, et al. Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett. 2008;278(1):1-9. https://doi/org/10.1111/j.1574-6968.2007.00918.x.
  91. Maksimov IV, Abizgil’dina RR, Pusenkova LI. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl Biochem Microbiol. 2011;47(4):333-345. https://doi/org/10.1134/S0003683811040090.
  92. Riley MA, Wertz JE. Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol. 2002;56:117-137. https://doi/org/10.1146/annurev.micro.56.012302.161024.
  93. Strobel G, Daisy B, Castillo U, Harper J. Natural products from endophytic microorganisms. J Nat Prod. 2004;67(2):257-268. https://doi/org/10.1021/np030397v.
  94. Гарипова С.Р., Гарифуллина Д.В., Маркова О.В., и др. Изучение бактериальных ассоциаций эндофитов клубеньков, способствующих увеличению продуктивности бобовых растений // Агрохимия. – 2010. – № 11. – C. 50–58. [Garipova SR, Garifullina DV, Markova OV, et al. Bacterial Endophyte Associations of Nodules Increasing the Productivity of Legumes. Agrokhimiya. 2010;(11):50-58 (In Russ.)]
  95. Verma S. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol. 2001;91(2-3):127-141. https://doi/org/10.1016/s0168-1656(01)00333-9.
  96. Costa JM, Loper JE. Characterization of siderophore production by the biological control agent enterobacter cloacae. MPMI-Mol Plant Microbe Interact. 1994;7(4):440-448. https://doi/org/10.1094/MPMI-7-0440.
  97. Pirttila AM, Joensuu P, Pospiech H, et al. Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol Plant. 2004;121(2):305-312. https://doi/org/10.1111/j.0031-9317.2004.00330.x.
  98. Ryan RP, Ryan DJ, Sun YC, et al. An acquired efflux system is responsible for copper resistance in Xanthomonas strain IG-8 isolated from China. FEMS Microbiol Lett. 2007;268(1):40-46. https://doi/org/10.1111/j.1574-6968.2006.00592.x.
  99. Гарипова С.Р., Иргалина Р.Ш., Дмитриева Д.Ф., Кутуева А.Г. Оценка новых штаммов эндофитных бацилл и ризобий при инокуляции фасоли сорта Уфимская в условиях Предуралья // Доклады Башкирского университета. – 2016. – Т. 1. – № 4. – С. 705–10. [Garipova SR, Irgalina RS, Dmitrieva DF, Kutueva AG. Evaluation of new strains of endophytic bacilli and rhizobia when inoculated of common bean Ufimskaya variety under South Ural. Doklady Bashkirskogo Universiteta. 2016;1(4):705-710. (In Russ.)]
  100. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ. Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact. 2004;17(1):6-15. https://doi/org/10.1094/MPMI.2004.17.1.6.
  101. Chebotar VK, Malfanova NV, Shcherbakov AV, et al. Endophytic bacteria in microbial preparations that improve plant development (review). Appl Biochem Microbiol. 2015;51(3):271-277. https://doi/org/10.1134/S0003683815030059.
  102. Shtark OY, Sulima AS, Zhernakov AI, et al. Arbuscular mycorrhiza development in pea (Pisum sativum L.) mutants impaired in five early nodulation genes including putative orthologs of NSP1 and NSP2. Symbiosis. 2016;68(1-3):129-144. https://doi/org/10.1007/s13199-016-0382-2.
  103. Гарипова СР. Перспективы использования эндофитных бактерий в биоремедиации почв агроэкосистем от пестицидов и других ксенобиотиков // Успехи современной биологии. – 2014. – Т. 134. – № 1. – С. 35–47. [Garipova SR. Prospects of Using Endophy tic Bacteria for Bioremediation of Arable Soils Polluted by Residual Amounts of Pesticides and Xenobiotics. Uspekhi Sovremennoi Biologii. 2014;134(1):35-47. (In Russ.)]
  104. Siciliano SD, Fortin N, Mihoc A, et al. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol. 2001;67(6):2469-2475. https://doi/org/10.1128/AEM.67.6.2469-2475.2001.
  105. Moore FP, Barac T, Borremans B, et al. Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol. 2006;29(7):539-556. https://doi/org/10.1016/j.syapm.2005.11.012.
  106. Oyserman BO, Medema MH, Raaijmakers JM. Road MAPs to engineer host microbiomes. Curr Opin Microbiol. 2018;43:46-54. https://doi/org/10.1016/j.mib.2017.11.023.
  107. Dini-Andreote F, Raaijmakers JM. Embracing community ecology in plant microbiome research. Trends Plant Sci. 2018;23(6):467-469. https://doi/org/10.1016/j.tplants.2018.03.013.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Васильева Е.Н., Ахтемова Г.А., Жуков В.А., Тихонович И.А., 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах