Жидкостная биопсия плазмы с выявлением циркулирующей опухолевой ДНК как способ малоинвазивной диагностики рака щитовидной железы

Обложка

Цитировать

Полный текст

Аннотация

Рак щитовидной железы занимает 9-е место по распространённости среди всего населения. Пятилетняя выживаемость при этом заболевании составляет более 98%. Однако у части пациентов наблюдаются случаи быстропрогрессирующего, стойкого к лечению рака, которые не могут быть выявлены на ранней стадии рутинными методами. Одним из методов решения данной проблемы является использование жидкостной биопсии. Эта процедура заключается в анализе опухолевых дериватов (в частности, циркулирующей ДНК) в биологических жидкостях организма. Для выявления опухолевого компонента применяют анализ hotspot-мутаций и паттернов эпигенетической регуляции, характерных для определённого новообразования. Известно, что повышение уровня циркулирующей опухолевой ДНК в плазме крови может на несколько месяцев опережать диагностику по данным МРТ пациентов, а также превосходить конвенциональные биомаркеры, такие как кальцитонин, при медуллярной карциноме щитовидной железы. Кроме того, имеется возможность малоинвазивного установления генотипа опухоли для подбора оптимальной химиотерапии. В данном обзоре обсуждаются современные достижения в области анализа циркулирующей опухолевой ДНК при таких онкологических заболеваниях щитовидной железы, как папиллярная, фолликулярная, медуллярная и анапластическая карциномы.

Об авторах

Тагир Ирекович Рахматуллин

Московский государственный университет имени М.В. Ломоносова

Автор, ответственный за переписку.
Email: tagir.rakhmatullin@internet.ru
ORCID iD: 0000-0002-4601-3478
SPIN-код: 7068-1678
Россия, Москва

Марк Джайн

Московский государственный университет имени М.В. Ломоносова

Email: mark@outlook.com
ORCID iD: 0000-0002-6594-8113
SPIN-код: 3783-4441
Россия, Москва

Лариса Михайловна Самоходская

Московский государственный университет имени М.В. Ломоносова

Email: slm@fbm.msu.ru
ORCID iD: 0000-0001-6734-3989
SPIN-код: 5404-6202

к.м.н., доцент

Россия, Москва

Владимир Анатольевич Животов

Национальный медико-хирургический центр имени Н.И. Пирогова

Email: opb0321@gmail.com
SPIN-код: 3383-6547

к.м.н., доцент

Россия, Москва

Список литературы

  1. Cancer Today. Estimated age-standardized incidence rates (World) in 2020, World, both sexes, all ages (excl. NMSC). Accessed: February 6, 2023. Available from: https://gco.iarc.fr/today/online-analysis-multi-bars?v=2020.
  2. Rossi ED, Pantanowitz L, Hornick JL. A worldwide journey of thyroid cancer incidence centred on tumour histology. Lancet Diabetes Endocrinol. 2021;9(4):193–194. doi: 10.1016/S2213-8587(21)00049-8
  3. Survival Rates for Thyroid Cancer. Accessed March 15, 2023. Available from: https://www.cancer.org/cancer/thyroid-cancer/detection-diagnosis-staging/survival-rates.html.
  4. Kasemsiri P, Chaisakgreenon P, Vatanasapt P, et al. Survival benefit of intervention treatment in advanced anaplastic thyroid cancer. Int J Surg Oncol. 2021;2021. doi: 10.1155/2021/5545127
  5. Sahli ZT, Canner JK, Zeiger MA, Mathur A. Association between age and disease specific mortality in medullary thyroid cancer. Am J Surg. 2021;221(2):478. doi: 10.1016/J.AMJSURG.2020.09.025
  6. Lim H, Devesa SS, Sosa JA, et al. Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA. 2017;317(13):1338–1348. doi: 10.1001/JAMA.2017.2719
  7. Oh CM, Lim J, Jung YS, et al. Decreasing trends in thyroid cancer incidence in South Korea: What happened in South Korea? Cancer Med. 2021;10(12):4087. doi: 10.1002/CAM4.3926
  8. Filetti S, Durante C, Hartl D, et al. Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(12):1856–1883. doi: 10.1093/ANNONC/MDZ400
  9. Giovanella L, Ceriani L, Garo ML. Is thyroglobulin a reliable biomarker of differentiated thyroid cancer in patients treated by lobectomy? A systematic review and meta-analysis. Clin Chem Lab Med. 2022;60(7):1091–1100. doi: 10.1515/CCLM-2022-0154
  10. Jingzhu Z, Xiangqian Z, Ming G, et al. Clinical challenges with calcitonin-negative medullary thyroid carcinoma: Three case reports and a review of the literature. Ann R Coll Surg Engl. 2022;104(3):221–230. doi: 10.1308/rcsann.2020.7118
  11. Algeciras-Schimnich A. Thyroglobulin measurement in the management of patients with differentiated thyroid cancer. Crit Rev Clin Lab Sci. 2018;55(3):205–218. doi: 10.1080/10408363.2018.1450830
  12. Santos AC, Horta M. Fast-growing cervical mass: Anaplastic thyroid carcinoma. BMJ Case Rep. 2018;2018:bcr2017223578. doi: 10.1136/BCR-2017-223578
  13. Trimboli P, Giannelli J, Marques B, et al. Head-to-head comparison of FNA cytology vs. calcitonin measurement in FNA washout fluids (FNA-CT) to diagnose medullary thyroid carcinoma. A systematic review and meta-analysis. Endocrine. 2022;75(1):33–39. doi: 10.1007/s12020-021-02892-x
  14. Pálsdóttir K, Fridsten S, Blomqvist L, et al. Interobserver agreement of transvaginal ultrasound and magnetic resonance imaging in local staging of cervical cancer. Ultrasound Obstet Gynecol. 2021;58(5):773–779. doi: 10.1002/UOG.23662
  15. Zhou W, Yue Y, Zhang X. Radiotherapy plus chemotherapy leads to prolonged survival in patients with anaplastic thyroid cancer compared with radiotherapy alone regardless of surgical resection and distant metastasis: A retrospective population study. Front Endocrinol (Lausanne). 2021;(12):1–10. doi: 10.3389/FENDO.2021.748023
  16. Alix-Panabières C, Pantel K. Liquid biopsy: From discovery to clinical application. Cancer Discov. 2021;11(4):858–873. doi: 10.1158/2159-8290.CD-20-1311
  17. Pös O, Biró O, Szemes T, Nagy B. Circulating cell-free nucleic acids: Characteristics and applications. Eur J Hum Genet. 2018;26(7):937–945. doi: 10.1038/S41431-018-0132-4
  18. Jiang P, Chan CW, Chan KC, et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci USA. 2015;112(11):E1317–E1325. doi: 10.1073/PNAS.1500076112
  19. Salvianti F, Giuliani C, Petrone L, et al. Integrity and quantity of total cell-free DNA in the diagnosis of thyroid cancer: Correlation with cytological classification. Int J Mol Sci. 2017;18(7):1350. doi: 10.3390/IJMS18071350
  20. Thakur S, Tobey A, Daley B, et al. Limited Utility of circulating cell-free DNA Integrity as a diagnostic tool for differentiating between malignant and benign thyroid nodules with indeterminate cytology (Bethesda Category III). Front Oncol. 2019;9:905. doi: 10.3389/FONC.2019.00905
  21. Giacona MB, Ruben GC, Iczkowski KA, et al. Cell-free DNA in human blood plasma: Length measurements in patients with pancreatic cancer and healthy controls. Pancreas. 1998;17(1):89–97. doi: 10.1097/00006676-199807000-00012
  22. Hu Z, Chen H, Long Y, et al. The main sources of circulating cell-free DNA: Apoptosis, necrosis and active secretion. Crit Rev Oncol Hematol. 2021;(157):103166. doi: 10.1016/J.CRITREVONC.2020.103166
  23. Liberti MV, Locasale JW. The warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211. doi: 10.1016/J.TIBS.2015.12.001
  24. Lee J, Chang JY, Kang YE, et al. Mitochondrial energy metabolism and thyroid cancers. Endocrinol Metab (Seoul). 2015;30(2):117–123. doi: 10.3803/ENM.2015.30.2.117
  25. Starenki D, Sosonkina N, Hong SK, et al. Mortalin (GRP75/HSPA9) promotes survival and proliferation of thyroid carcinoma cells. Int J Mol Sci. 2019;20(9). doi: 10.3390/IJMS20092069
  26. McKenzie S, Kyprianou N. Apoptosis evasion: The role of survival pathways in prostate cancer progression and therapeutic resistance. J Cell Biochem. 2006;97(1):18. doi: 10.1002/JCB.20634
  27. Diehl F, Li M, Dressman D, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA. 2005;102(45):16368. doi: 10.1073/PNAS.0507904102
  28. Kustanovich A, Schwartz R, Peretz T, Grinshpun A. Life and death of circulating cell-free DNA. Cancer Biol Ther. 2019;20(8):1057. doi: 10.1080/15384047.2019.1598759
  29. Caglar O, Cilgin B, Eroglu M, Cayir A. Evaluation of circulating cell free DNA in plasma as a biomarker of different thyroid diseases. Braz J Otorhinolaryngol. 2020;86(3):321–326. doi: 10.1016/J.BJORL.2018.12.008
  30. Khier S, Gahan PB. Hepatic clearance of cell-free DNA: Possible impact on early metastasis diagnosis. Mol Diagn Ther. 2021;25(6):677–682. doi: 10.1007/S40291-021-00554-2
  31. Heitzer E, Auer M, Hoffmann EM, et al. Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer. Int J Cancer. 2013;133(2):346–356. doi: 10.1002/IJC.28030
  32. Stawski R, Walczak K, Kosielski P, et al. Repeated bouts of exhaustive exercise increase circulating cell free nuclear and mitochondrial DNA without development of tolerance in healthy men. PLoS One. 2017;12(5). doi: 10.1371/JOURNAL.PONE.0178216
  33. Khatami F, Tavangar SM. Liquid biopsy in thyroid cancer: New insight. Int J Hematol Oncol Stem Cell Res. 2018;12(3):234–247
  34. Agarwal S, Bychkov A, Jung CK. Emerging biomarkers in thyroid practice and research. Cancers (Basel). 2021;14(1):204. doi: 10.3390/CANCERS14010204
  35. Wan JC, Massie C, Garcia-Corbacho J, et al. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–238. doi: 10.1038/NRC.2017.7
  36. Fussey JM, Bryant JL, Batis N, et al. The clinical utility of cell-free DNA measurement in differentiated thyroid cancer: A systematic review. Front Oncol. 2018;(8):132. doi: 10.3389/FONC.2018.00132
  37. Kraus-Fischer G, Alvarado-Bachmann R, de Rienzo-Madero B, et al. [Correlation between the Bethesda system for thyroid nodules and post-thyroidectomy histopathological diagnosis. (In Spanish).] Rev Med Inst Mex Seguro Soc. 2020;58(2):114–121. doi: 10.24875/RMIMSS.M20000008
  38. Bayrak BYa, Eruyar AT. Malignancy rates for Bethesda III and IV thyroid nodules: A retrospective study of the correlation between fine-needle aspiration cytology and histopathology. BMC Endocr Disord. 2020;20(1):48. doi: 10.1186/S12902-020-0530-9
  39. Bongers PJ, Greenberg CA, Hsiao R, et al. Differences in long-term quality of life between hemithyroidectomy and total thyroidectomy in patients treated for low-risk differentiated thyroid carcinoma. Surgery. 2020;167(1):94-101. doi: 10.1016/J.SURG.2019.04.060
  40. Celik M, Bulbul BY, Ayturk S, et al. The relation between BRAFV600E mutation and clinicopathological characteristics of papillary thyroid cancer. Med Glas (Zenica). 2020;17(1):30–34. doi: 10.17392/1086-20
  41. Ritterhouse LL, Barletta JA. BRAF V600E mutation-specific antibody: A review. Semin Diagn Pathol. 2015;32(5):400–408. doi: 10.1053/J.SEMDP.2015.02.010
  42. Acuña-Ruiz A, Carrasco-López C, Santisteban P. Genomic and epigenomic profile of thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2023;37(1):101656. doi: 10.1016/J.BEEM.2022.101656
  43. Yao Y, Xu P, Ying T, et al. Integrative analysis of DNA methylation and gene expression identified follicular thyroid cancer-specific diagnostic biomarkers. Front Endocrinol (Lausanne). 2022;12:736068. doi: 10.3389/FENDO.2021.736068/FULL
  44. Gu P, Zeng Y, Ma W, et al. Characterization of the CpG island methylator phenotype subclass in papillary thyroid carcinoma. Front Endocrinol (Lausanne). 2022;13:1008301. doi: 10.3389/FENDO.2022.1008301/FULL
  45. Rodríguez-Rodero S, Delgado-Álvarez E, Díaz-Naya L, Martín Nieto A, Menéndez Torre E. Epigenetic modulators of thyroid cancer. Endocrinol Diabetes Nutr. 2017;64(1):44–56. doi: 10.1016/J.ENDINU.2016.09.006
  46. Mancikova V, Buj R, Castelblanco E, et al. DNA methylation profiling of well-differentiated thyroid cancer uncovers markers of recurrence free survival. Int J Cancer. 2014;135(3):598–610. doi: 10.1002/IJC.28703
  47. Alvarez-Nuñez F, Bussaglia E, Mauricio D, et al. PTEN promoter methylation in sporadic thyroid carcinomas. Thyroid. 2006;16(1):17–23. doi: 10.1089/THY.2006.16.17
  48. Zarkesh M, Zadeh-Vakili A, Azizi F, et al. Altered epigenetic mechanisms in thyroid cancer subtypes. Molecular Diagnosis Therapy. 2017;22(1):41–56. doi: 10.1007/S40291-017-0303-Y
  49. Asa SL, Ezzat S. The epigenetic landscape of differentiated thyroid cancer. Mol Cell Endocrinol. 2018;469:3–10. doi: 10.1016/J.MCE.2017.07.012
  50. Condello V, Macerola E, Ugolini C, et al. Analysis of circulating tumor DNA does not improve the clinical management of patients with locally advanced and metastatic papillary thyroid carcinoma. Head Neck. 2018;40(8):1752–1758. doi: 10.1002/HED.25155
  51. Lupo M, Guttler R, Geck Z, et al. Is measurement of circulating tumor dna of diagnostic use in patients with thyroid nodules? Endocr Pract. 2018;24(5):453–459. doi: 10.4158/EP-2017-0213
  52. Scholarship W, Bhupendrabhai PK, Nichols AC, Bhupendrabhai K. Detection of circulating thyroid tumor DNA in patients with thyroid nodules. Published online 2015. Accessed: February 27, 2022. Available from: https://ir.lib.uwo.ca/etd/3644/.
  53. Kwak JY, Jeong JJ, Kang SW, et al. Study of peripheral BRAF(V600E) mutation as a possible novel marker for papillary thyroid carcinomas. Head Neck. 2013;35(11):1630–1633. doi: 10.1002/HED.23195
  54. Chuang TC, Chuang AY, Poeta L, et al. Detectable BRAF mutation in serum DNA samples from patients with papillary thyroid carcinomas. Head Neck. 2010;32(2):229–234. doi: 10.1002/HED.21178
  55. Kim BH, Kim IJ, Lee BJ, et al. Detection of plasma BRAF(V600E) mutation is associated with lung metastasis in papillary thyroid carcinomas. Yonsei Med J. 2015;56(3):634–640. doi: 10.3349/YMJ.2015.56.3.634
  56. Jensen K, Thakur S, Patel A, et al. Detection of BRAFV600E in liquid biopsy from patients with papillary thyroid cancer is associated with tumor aggressiveness and response to therapy. J Clin Med. 2020;9(8):1–12. doi: 10.3390/JCM9082481
  57. Li H, Zhao J, Zhang J, et al. Detection of ctDNA in the plasma of patients with papillary thyroid carcinoma. Exp Ther Med. 2019;18(5):3389–3396. doi: 10.3892/ETM.2019.7997
  58. Khatami F, Teimoori-Toolabi L, Heshmat R, et al. Circulating ctDNA methylation quantification of two DNA methyl transferases in papillary thyroid carcinoma. J Cell Biochem. 2019; 120(10):17422–17437. doi: 10.1002/JCB.29007
  59. Hu S, Ewertz M, Tufano RP, et al. Detection of serum deoxyribonucleic acid methylation markers: A novel diagnostic tool for thyroid cancer. J Clin Endocrinol Metaboli. 2006;91(1): 98–104. doi: 10.1210/JC.2005-1810
  60. Molinaro E, Romei C, Biagini A, et al. Anaplastic thyroid carcinoma: From clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol. 2017;13(11):644–660. doi: 10.1038/NRENDO.2017.76
  61. Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052–1066. doi: 10.1172/JCI85271
  62. Yakushina VD, Lerner LV, Lavrov AV. Gene fusions in thyroid cancer. Thyroid. 2018;28(2):158–167. doi: 10.1089/thy.2017.0318
  63. Qin Y, Wang JR, Wang Y, et al. Clinical utility of circulating cell-free DNA mutations in anaplastic thyroid carcinoma. Thyroid. 2021;31(8):1235–1243. doi: 10.1089/THY.2020.0296
  64. Sandulache VC, Williams MD, Lai SY, et al. Real-Time genomic characterization utilizing circulating cell-free DNA in patients with anaplastic thyroid carcinoma. Thyroid. 2017;27(1):81–87. doi: 10.1089/THY.2016.0076
  65. Allin DM, Shaikh R, Carter P, et al. Circulating tumour DNA is a potential biomarker for disease progression and response to targeted therapy in advanced thyroid cancer. Eur J Cancer. 2018;(103):165–175. doi: 10.1016/J.EJCA.2018.08.013
  66. Iyer PC, Cote GJ, Hai T, et al. Circulating BRAF V600E cell-free DNA as a biomarker in the management of anaplastic thyroid carcinoma. JCO Precis Oncol. 2018;(2):1–11. doi: 10.1200/PO.18.00173
  67. Wells SA, Asa SL, Dralle H, et al. Revised American thyroid association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610. doi: 10.1089/THY.2014.0335
  68. Cote GJ, Evers C, Hu MI, et al. Prognostic significance of circulating RET M918T mutated tumor DNA in patients with advanced medullary thyroid carcinoma. J Clin Endocrinol Metab. 2017;102(9):3591–3599. doi: 10.1210/JC.2017-01039
  69. Machens A, Dralle H. Biomarker-based risk stratification for previously untreated medullary thyroid cancer. J Clin Endocrinol Metab. 2010;95(6):2655–2663. doi: 10.1210/JC.2009-2368
  70. Fugazzola L, di Stefano M, Censi S, et al. Basal and stimulated calcitonin for the diagnosis of medullary thyroid cancer: Updated thresholds and safety assessment. J Endocrinol Invest. 2021;44(3):587. doi: 10.1007/S40618-020-01356-9
  71. Kartal Baykan E, Erdoğan M. Basal and pentagastrin-stimulated calcitonin cut-off values in diagnosis of preoperative medullary thyroid cancer. Turk J Med Sci. 2021;51(2):650. doi: 10.3906/SAG-2003-182
  72. Solomon BJ, Tan L, Lin JJ, et al. RET solvent front mutations mediate acquired resistance to selective RET inhibition in RET-Driven malignancies. J Thorac Oncol. 2020;15(4):541–549. doi: 10.1016/J.JTHO.2020.01.006
  73. QIAamp Circulating Nucleic Acid Handbook, QIAGEN. Accessed: July 20, 2022. Available from: https://www.qiagen.com/us/resources/resourcedetail?id=0c4b31ab-f4fb-425f-99bf-10ab9538c061&lang=en.
  74. Taylor SC, Laperriere G, Germain H. Droplet digital PCR versus qPCR for gene expression analysis with low abundant targets: From variable nonsense to publication quality data. Scientific Reports 2017;7(1):2409. doi: 10.1038/s41598-017-02217-x
  75. Liu R, Xing M. TERT Promoter mutations in thyroid cancer. Endocr Relat Cancer. 2016;23(3):R143. doi: 10.1530/ERC-15-0533
  76. Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: Systematic investigation of critical experimental parameters. Nucleic Acids Res. 2001;29(13):65–65. doi: 10.1093/NAR/29.13.E65
  77. Liu Y, Siejka-Zielińska P, Velikova G, et al. Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution. Nat Biotechnol. 2019;37(4):424–429. doi: 10.1038/S41587-019-0041-2
  78. Martisova A, Holcakova J, Izadi N, et al. DNA methylation in solid tumors: Functions and methods of detection. Int J Mol Sci. 2021;22(8):4247. doi: 10.3390/IJMS22084247
  79. About ThyroSeq. ThyroSeq International. Accessed: February 6, 2023. Available from: https://thyroseqinternational.com/about-thyroseq.
  80. Silaghi CA, Lozovanu V, Georgescu CE, et al. Thyroseq v3, Afirma GSC, and microRNA panels versus previous molecular tests in the preoperative diagnosis of indeterminate thyroid nodules: A systematic review and meta-analysis. Front Endocrinol (Lausanne). 2021;(12):649522. doi: 10.3389/FENDO.2021.649522/FULL
  81. Afirma Thyroid Molecular Diagnostics. Accessed: February 6, 2023. Available from: https://www.afirma.com/.
  82. Polyzos SA, Anastasilakis AD. Clinical complications following thyroid fine-needle biopsy: A systematic review. Clin Endocrinol (Oxf). 2009;71(2):157–165. doi: 10.1111/J.1365-2265.2009.03522.X
  83. Cao H, Kao RH, Hsieh MC. Comparison of core-needle biopsy and fine-needle aspiration in screening for thyroid malignancy: A systematic review and meta-analysis. Curr Med Res Opin. 2016;32(7):1291–1301. doi: 10.1185/03007995.2016.1170674
  84. Zane M, Agostini M, Enzo MV, et al. Circulating cell-free DNA, SLC5A8 and SLC26A4 hypermethylation, BRAFV600E: A non-invasive tool panel for early detection of thyroid cancer. Biomed Pharmacother. 2013;67(8):723–730. doi: 10.1016/J.BIOPHA.2013.06.007

© Эко-Вектор, 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах