Биомаркеры хирургического сепсиса. Обзор зарубежных научно-медицинских публикаций

Обложка

Цитировать

Полный текст

Аннотация

Сепсис представляет собой клинический синдром, определяемый как нерегулируемый ответ хозяина на инфекцию и приводящий к опасной для жизни дисфункции органов. Как одно из самых катастрофических хирургических осложнений, сепсис остаётся серьёзной проблемой здравоохранения во всём мире с ростом заболеваемости, несмотря на стерильную предоперационную профилактику и введение антибиотиков. Смертность от сепсиса остаётся неизменной уже более 10 лет, а раннее выявление заболевания — наиболее важный фактор выживаемости пациентов. Ранняя и точная диагностика инфекции и органной дисфункции остаётся проблематичной, что подтверждается многочисленными интервенционными испытаниями, которые не привели к улучшению результатов. Эти неудачи отчасти связаны с запоздалым вмешательством, когда у пациента развилась полиорганная недостаточность, и терапевтическое окно возможностей закрылось. Успех иммуномодулирующей и других терапевтических стратегий, который часто достигается в доклинических моделях сепсиса, зависит от их применения на ранних стадиях развития синдрома или даже от упреждающего действия. Способность прогнозировать развитие сепсиса у хирургических пациентов с помощью лабораторного анализа плазмы может оказаться полезной для врачей отделения интенсивной терапии и реанимации. Значительные усилия прилагаются для разработки биомаркеров ранних стадий сепсиса с высокой чувствительностью и специфичностью. Для ранней и точной диагностики, эффективного лечения сепсиса необходимо глубокое понимание патогенетических механизмов. Нарушение регуляции ответа пациента на инфекцию, приводящее к сепсису и септическому шоку, изучается с использованием «омиксных» подходов — протеомики, транскриптомики, метаболомики. Из-за сложности и большого объёма наборов данных становятся необходимыми специальные инструменты анализа данных, так называемое машинное обучение.

Об авторах

Сергей Григорьевич Щербак

Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет

Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5036-1259
SPIN-код: 1537-9822

д.м.н., профессор

Россия, Санкт-Петербург; Санкт-Петербург

Андрей Михайлович Сарана

Санкт-Петербургский государственный университет; Комитет по здравоохранению Администрации Санкт-Петербурга

Email: asarana@mail.ru
ORCID iD: 0000-0003-3198-8990
SPIN-код: 7922-2751

к.м.н., доцент

Россия, Санкт-Петербург; Санкт-Петербург

Дмитрий Александрович Вологжанин

Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет

Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN-код: 7922-7302

д.м.н.

Россия, Санкт-Петербург; Санкт-Петербург

Александр Сергеевич Голота

Городская больница № 40 Курортного административного района

Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-код: 7234-7870

к.м.н., доцент

Россия, Санкт-Петербург

Александр Анатольевич Рудь

Военно-медицинская академия имени С.М. Кирова

Email: wph04@mail.ru
SPIN-код: 4820-8345
Россия, Санкт-Петербург

Татьяна Аскаровна Камилова

Городская больница № 40 Курортного административного района

Автор, ответственный за переписку.
Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-код: 2922-4404

к.б.н.

Россия, Санкт-Петербург

Список литературы

  1. Miao H, Chen S, Ding R. Evaluation of the molecular mechanisms of sepsis using proteomics. Front Immunol. 2021;12:733537. doi: 10.3389/fimmu.2021.733537
  2. Vincent JL. Emerging paradigms in sepsis. EBioMed. 2022;86: 104398. doi: 10.1016/j.ebiom.2022.104398
  3. Van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis. Immunity. 2021;54(11):2450–2464. doi: 10.1016/j.immuni.2021.10.012
  4. Pilar-Orive J, Astigarraga I, Azkargorta M, et al. A three-protein panel to support the diagnosis of sepsis in children. J Clin Med. 2022;11(6):1563. doi: 10.3390/jcm11061563
  5. Barichello T, Generoso JS, Singer M, Dal-Pizzol F. Biomarkers for sepsis. More than just fever and leukocytosis: A narrative review. Crit Care. 2022;26(1):14. doi: 10.1186/s13054-021-03862-5
  6. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287
  7. Xu W, Huo J, Chen G, et al. Association between red blood cell distribution width to albumin ratio and prognosis of patients with sepsis: A retrospective cohort study. Front Nutr. 2022;9:1019502. doi: 10.3389/fnut.2022.1019502
  8. Hou H, Yang J, Han Z, et al. Predictive values of the SOFA score and procalcitonin for septic shock after percutaneous nephrolithotomy. Urolithiasis. 2022;50(6):729–735. doi: 10.1007/s00240-022-01366-7
  9. Spoto S, Fogolari M, De Florio L, et al. Procalcitonin and MR-proadrenomedullin combination in the etiological diagnosis and prognosis of sepsis and septic shock. Microb Pathog. 2019;137:103763. doi: 10.1016/j.micpath.2019.103763
  10. Tan M, Lu Y, Jiang H, et al. The diagnostic accuracy of procalcitonin and C-reactive protein for sepsis: A systematic review and meta-analysis. J Cell Biochem. 2019;120(4): 5852–5859. doi: 10.1002/jcb.27870
  11. Jeong YK, Kim EY. Predictive role of changes in presepsin and early sepsis in ICU patients after abdominal surgery. J Surg Res. 2022;278:207–215. doi: 10.1016/j.jss.2022.04.072
  12. Bosch F, Schallhorn S, Miksch RC, et al. The prognostic value of presepsin for sepsis in abdominal surgery: A prospective study. Shock. 2020;54(1):56–61. doi: 10.1097/SHK.0000000000001479
  13. Lee S, Song J, Park DW, et al. Diagnostic and prognostic value of presepsin and procalcitonin in non-infectious organ failure, sepsis, and septic shock: A prospective observational study according to the Sepsis-3 definitions. BMC Infect Dis. 2022;22(1):8. doi: 10.1186/s12879-021-07012-8
  14. Kang J, Gong P, Zhang XD, et al. Early differential value of plasma presepsin on infection of trauma patients. Shock. 2019;52(3):362–369. doi: 10.1097/SHK.0000000000001269
  15. Pilar-Orive J, Astigarraga I, Azkargorta M, et al. A three-protein panel to support the diagnosis of sepsis in children. J Clin Med. 2022;11(6):1563. doi: 10.3390/jcm11061563
  16. Wang C, Li Q, Tang C, et al. Characterization of the blood and neutrophil-specific microbiomes and exploration of potential bacterial biomarkers for sepsis in surgical patients. Immun Inflamm Dis. 2021;9(4):1343–1357. doi: 10.1002/iid3.483
  17. Lukaszewski RA, Jones HE, Gersuk VH, et al. Presymptomatic diagnosis of postoperative infection and sepsis using gene expression signatures. Intensive Care Med. 2022;48(9): 1133–1143. doi: 10.1007/s00134-022-06769-z
  18. Lai Y, Lin C, Lin X, et al. Comprehensive analysis of molecular subtypes and hub genes of sepsis by gene expression profiles. Front Genet. 2022;13:884762. doi: 10.3389/fgene.2022.884762
  19. Thair S, Mewes C, Hinz J, et al. Gene expression-based diagnosis of infections in critically ill patients-prospective validation of the SepsisMetaScore in a longitudinal severe trauma cohort. Crit Care Med. 2021;49(8):e751–e760. doi: 10.1097/CCM.0000000000005027
  20. Brakenridge SC, Efron PA, Cox MC, et al. Current epidemiology of surgical sepsis: Discordance between inpatient mortality and 1-year outcomes. Ann Surg. 2019;270(3):502–510. doi: 10.1097/SLA.0000000000003458
  21. Kalantar KL, Neyton L, Abdelghany M, et al. Integrated host-microbe plasma metagenomics for sepsis diagnosis in a prospective cohort of critically ill adults. Nat Microbiol. 2022;7(11):1805–1816. doi: 10.1038/s41564-022-01237-2
  22. Sweeney TE, Perumal TM, Henao R, et al. A community approach to mortality prediction in sepsis via gene expression analysis. Nat Commun. 2018;9(1):694. doi: 10.1038/s41467-018-03078-2
  23. Velásquez SY, Coulibaly A, Sticht C, et al. Key signature genes of early terminal granulocytic differentiation distinguish sepsis from systemic inflammatory response syndrome on intensive care unit admission. Front Immunol. 2022;13:864835. doi: 10.3389/fimmu.2022.864835
  24. Almansa R, Heredia-Rodríguez M, Gomez-Sanchez E, et al. Transcriptomic correlates of organ failure extent in sepsis. J Infect. 2015;70(5):445–456. doi: 10.1016/j.jinf.2014.12.010
  25. Martínez-Paz P, Aragón-Camino M, Gómez-Sánchez EA, et al. Distinguishing septic shock from non-septic shock in postsurgical patients using gene expression. J Infect. 2021;83(2): 147–155. doi: 10.1016/j.jinf.2021.05.039
  26. Schaack D, Siegler BH, Tamulyte S, et al. The immunosuppressive face of sepsis early on intensive care unit-A large-scale microarray meta-analysis. PLoS One. 2018;13(6):e0198555. doi: 10.1371/journal.pone.0198555
  27. Kosyakovsky LB, Somerset E, Rogers AJ, et al. Machine learning approaches to the human metabolome in sepsis identify metabolic links with survival. Intensive Care Med Exp. 2022;10(1):24. doi: 10.1186/s40635-022-00445-8
  28. Wang J, Sun Y, Teng S, Li K. Prediction of sepsis mortality using metabolite biomarkers in the blood: A meta-analysis of death-related pathways and prospective validation. BMC Med. 2020;18(1):83. doi: 10.1186/s12916-020-01546-5
  29. Ahn S, Lee SH, Chung KS, et al. Development and validation of a novel sepsis biomarker based on amino acid profiling. Clin Nutr. 2021;40(6):3668–3676. doi: 10.1016/j.clnu.2021.05.008
  30. Briegel J, Möhnle P, Keh D, et al. Corticotropin-stimulated steroid profiles to predict shock development and mortality in sepsis: From the HYPRESS study. Crit Care. 2022;26(1):343. doi: 10.1186/s13054-022-04224-5
  31. Van den Berghe G, Téblick A, Langouche L, Gunst J. The hypothalamus-pituitary-adrenal axis in sepsis- and hyperinflammation-induced critical illness: Gaps in current knowledge and future translational research directions. EBioMed. 2022;84:104284. doi: 10.1016/j.ebiom.2022.104284
  32. Antonakos N, Gilbert C, Théroude C, et al. Modes of action and diagnostic value of miRNAs in sepsis. Front Immunol. 2022; 13:951798. doi: 10.3389/fimmu.2022.951798
  33. Formosa A, Turgeon P, Dos Santos CC, et al. Role of miRNA dysregulation in sepsis. Mol Med. 2022;28(1):99. doi: 10.1186/s10020-022-00527-z

© Эко-Вектор, 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах