Microcystic macular edema: clinical significance and pathogenetic mechanisms

Cover Page

Cite item

Abstract

Microcystic macular edema represents a specific type of intraretinal cystic changes, localizing predominantly in the inner nuclear layer and detectable using the optical coherence tomography. Contrary to the classic concepts on the macular edema as a result of vascular permeability, microcystic macular edema is not accompanied by exudation and it is perceived as the manifestation of neuroglial dysfunction, often associated with the damaging of the optic nerve. Initially described in patients with multiple sclerosis, microcystic macular edema was subsequently detected in the wide spectrum of diseases, including glaucoma, neuromyelitis optica spectrum disorders, diabetic retinopathy, occlusion of the retinal veins, senile macular degeneration and epiretinal membranes. The key pathogenetic mechanisms are considered the retrograde transsynaptic degeneration of the ganglionic cells in the retina and the functional/structural damage of the Muller’s cells, in particular, the impaired operation of the AQP4 aquaporin channels. The morphological features of the microcystic macular edema, its location and clinical significance vary depending on the main disease and in a number of cases can act as the early biomarker of the neurodegenerative process. The article contains the pathophysiological models, the clinical correlates and the modern methods of the diagnostics of microcystic macular edema with special emphasis on the role of multimodal visualization and artificial intelligence technologies. Taking into consideration the rates of accidental detection and the potential relation to the systemic diseases, microcystic macular edema should be considered not as an isolated ophthalmology condition, but as the component of wider neuroretinal disorder requiring interdisciplinary approach to the diagnostics and follow-up.

About the authors

Elizaveta A. Danilova

Kuban State Medical University

Author for correspondence.
Email: neurosurg@bk.ru
ORCID iD: 0009-0002-4206-032X
Russian Federation, 4 Mitrofana Sedina st, Krasnodar, 350063

Ilona V. Plokhikh

Kuban State Medical University

Email: ilona-kirsanova@list.ru
ORCID iD: 0009-0003-3339-2290
Russian Federation, Krasnodar

Liana M. Djanbekova

Rostov State Medical University

Email: mm.mumakova@mail.ru
ORCID iD: 0009-0002-7785-3602
Russian Federation, Rostov-on-Don

Arkadiy E. Tyan

Rostov State Medical University

Email: arkashatyan@icloud.com
ORCID iD: 0009-0005-9749-6536
Russian Federation, Rostov-on-Don

Guzel I. Nafikova

Bashkir State Medical University

Email: gzzz1470@gmail.com
ORCID iD: 0009-0003-1393-0266
Russian Federation, Ufa

Guzel I. Antipina

Bashkir State Medical University

Email: g-gabbasova@bk.ru
ORCID iD: 0009-0006-6223-2175
Russian Federation, Ufa

Alina I. Bikbulatova

Bashkir State Medical University

Email: Alina.haibullina1997@gmail.com
ORCID iD: 0009-0002-1857-8831
Russian Federation, Ufa

Yulia A. Rybina

Yaroslavl State Medical University

Email: rubina.kosroma@mail.ru
ORCID iD: 0009-0005-1672-9212
Russian Federation, Yaroslavl

Muslim S. Khulagov

Ingush State University

Email: mxulagov@mail.ru
ORCID iD: 0009-0004-0835-7941
Russian Federation, Magas

Malika I. Batdyeva

North Caucasian State Academy

Email: malika011112@mail.ru
ORCID iD: 0009-0000-5432-6418
Russian Federation, Cherkessk

Kamilla M. Gaifullina

Bashkir State Medical University

Email: kamilla01gai@icloud.com
ORCID iD: 0009-0006-7784-7180
Russian Federation, Ufa

Inna V. Vasilyeva

Bashkir State Medical University

Email: inna.vasileva.01.01@mail.ru
ORCID iD: 0009-0001-0508-8174
Russian Federation, Ufa

Anastasia E. Krivosheeva

Kuban State Medical University

Email: n.arteva@yandex.ru
ORCID iD: 0009-0009-7276-1662
Russian Federation, Krasnodar

Ilmir A. Usmanov

Bashkir State Medical University

Email: ilmir.usmanov14@gmail.com
ORCID iD: 0009-0002-5499-0268
Russian Federation, Ufa

References

  1. Burggraaff MC, Trieu J, de Vries-Knoppert WA, et al. The clinical spectrum of microcystic macular edema. Invest Ophthalmol Vis Sci. 2014;55(2):952–961. doi: 10.1167/iovs.13-12912
  2. Панова И.Е., Гвазава В.Г. ОКТ-морфоструктурные варианты макулярного отека при срединном увеите // Офтальмология. 2024. Т. 21, № 4. С. 716–722. [Panova IE, Gvazava VG. OCT patterns of macular edema in intermediate uveitis. Ophthalmology. 2024;21(4):716–722. (In Russ.)]. doi: 10.18008/1816-5095-2024-4-716-722 EDN: YNGDGG
  3. Gelfand JM, Nolan R, Schwartz DM, et al. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain. 2012;135(Pt 6):1786–1793. doi: 10.1093/brain/aws098
  4. Бикбов М.М., Файзрахманов Р.Р., Зайнуллин Р.М., и др. Макулярный отек как проявление диабетической ретинопатии // Сахарный диабет. 2017. Т. 20, № 4. С. 263–269. [Bikbov MM, Fayzrakhmanov RR, Zaynullin RM, et al. Macular oedema as manifestation of diabetic retinopathy. Diabetes mellitus. 2017;20(4):263–269]. doi: 10.14341/DM8328 EDN: ZMZAON
  5. Bhatti MT, Mansukhani SA, Chen JJ. Microcystic macular edema in optic nerve glioma. Ophthalmology. 2020;127(7):930. doi: 10.1016/j.ophtha.2020.03.017
  6. Dwivedi A. Microcystic macular edema in a case of optic disc pit. Ophthalmol Retina. 2022;6(2):178. doi: 10.1016/j.oret.2021.09.011
  7. Lee DH, Park SE, Lee CS. Microcystic macular edema and cystoid macular edema before and after epiretinal membrane surgery. Retina. 2021;41(8):1652–1659. doi: 10.1097/IAE.0000000000003087
  8. Gaudric A, Audo I, Vignal C, et al. Non-vasogenic cystoid maculopathies. Prog Retin Eye Res. 2022;91:101092. doi: 10.1016/j.preteyeres.2022.101092
  9. Voide N, Borruat FX. Microcystic macular edema in optic nerve atrophy: A case series. Klin Monbl Augenheilkd. 2015;232(4):455–458. doi: 10.1055/s-0035-1545797
  10. Wen JC, Freedman SF, El-Dairi MA, Asrani S. Microcystic macular changes in primary open-angle glaucoma. J Glaucoma. 2016;25(3):258–262. doi: 10.1097/IJG.0000000000000129
  11. Wolff B, Azar G, Vasseur V, et al. Microcystic changes in the retinal internal nuclear layer associated with optic atrophy: A prospective study. J Ophthalmol. 2014;2014:395189. doi: 10.1155/2014/395189
  12. Abegg M, Dysli M, Wolf S, et al. Microcystic macular edema: Retrograde maculopathy caused by optic neuropathy. Ophthalmology. 2014;121(1):142–149. doi: 10.1016/j.ophtha.2013.08.045
  13. Saidha S, Sotirchos ES, Ibrahim MA, et al. Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: A retrospective study. Lancet Neurol. 2012;11(11):963–972. doi: 10.1016/S1474-4422(12)70213-2
  14. Monteiro ML, Araújo RB, Suzuki AC, et al. Homonymous hemianopic hyporeflective retinal abnormality on infrared confocal scanning laser photography: A novel sign of optic tract lesion. J Neuroophthalmol. 2016;36(1):46–49. doi: 10.1097/WNO.0000000000000278
  15. Goodyear MJ, Crewther SG, Junghans BM. A role for aquaporin-4 in fluid regulation in the inner retina. Vis Neurosci. 2009;26(2):159–165. doi: 10.1017/S0952523809090038
  16. Govetto A, Su D, Farajzadeh M, et al. Microcystoid macular changes in association with idiopathic epiretinal membranes in eyes with and without glaucoma: Clinical insights. Am J Ophthalmol. 2017;181:156–165. doi: 10.1016/j.ajo.2017.06.023
  17. Green AJ, McQuaid S, Hauser SL, et al. Ocular pathology in multiple sclerosis: Retinal atrophy and inflammation irrespective of disease duration. Brain. 2010;133(Pt 6):1591–1601. doi: 10.1093/brain/awq080
  18. Hasegawa T, Akagi T, Yoshikawa M, et al. Microcystic inner nuclear layer changes and retinal nerve fiber layer defects in eyes with glaucoma. PLoS One. 2015;10(6):e0130175. doi: 10.1371/journal.pone.0130175
  19. Gocho K, Kikuchi S, Kabuto T, et al. High-resolution en face images of microcystic macular edema in patients with autosomal dominant optic atrophy. Biomed Res Int. 2013;2013:676803. doi: 10.1155/2013/676803
  20. Brar M, Yuson R, Kozak I, et al. Correlation between morphologic features on spectral-domain optical coherence tomography and angiographic leakage patterns in macular edema. Retina. 2010;30(3):383–389. doi: 10.1097/IAE.0b013e3181cd4803
  21. Li J, Chen Y, Zhang Y, et al. Visual function and disability are associated with microcystic macular edema, macular and peripapillary vessel density in patients with neuromyelitis optica spectrum disorder. Front Neurol. 2022;13:1019959. doi: 10.3389/fneur.2022.1019959
  22. Srivastava R, Aslam M, Kalluri SR, et al. Potassium channel KIR4.1 as an immune target in multiple sclerosis. N Engl J Med. 2012;367(2):115–123. doi: 10.1056/NEJMoa1110740
  23. Saidha S, Syc SB, Durbin MK, et al. Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Mult Scler. 2011;17(12):1449–1463. doi: 10.1177/1352458511418630
  24. Saidha S, Syc SB, Ibrahim MA, et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain. 2011;134(Pt 2):518–533. doi: 10.1093/brain/awq346
  25. Kaufhold F, Zimmermann H, Schneider E, et al. Optic neuritis is associated with inner nuclear layer thickening and microcystic macular edema independently of multiple sclerosis. PLoS One. 2013;8(8):e71145. doi: 10.1371/journal.pone.0071145
  26. Naismith RT, Tutlam NT, Xu J, et al. Optical coherence tomography differs in neuromyelitis optica compared with multiple sclerosis. Neurology. 2009;72(12):1077–1082. doi: 10.1212/01.wnl.0000345042.53843.d5
  27. Ratchford JN, Quigg ME, Conger A, et al. Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology. 2009;73(4):302–308. doi: 10.1212/WNL.0b013e3181af78b8
  28. Reichenbach A, Wurm A, Pannicke T, et al. Müller cells as players in retinal degeneration and edema. Graefes Arch Clin Exp Ophthalmol. 2007;245(5):627–636. doi: 10.1007/s00417-006-0516-y
  29. Sotirchos ES, Saidha S, Byraiah G, et al. In vivo identification of morphologic retinal abnormalities in neuromyelitis optica. Neurology. 2013;80(15):1406–1414. doi: 10.1212/WNL.0b013e31828c2f7a
  30. Chapelle AC, Rakic JM, Plant GT. Nonarteritic anterior ischemic optic neuropathy: Cystic change in the inner nuclear layer caused by edema and retrograde maculopathy. Ophthalmol Sci. 2022;3(1):100230. doi: 10.1016/j.xops.2022.100230
  31. Abegg M, Zinkernagel M, Wolf S. Microcystic macular degeneration from optic neuropathy. Brain. 2012;135(Pt 12):e225. doi: 10.1093/brain/aws215
  32. Masri RA, Grünert U, Martin PR. Analysis of parvocellular and magnocellular visual pathways in human retina. J Neurosci. 2020;40(42):8132–8148. doi: 10.1523/JNEUROSCI.1671-20.2020
  33. Carbonelli M, La Morgia C, Savini G, et al. Macular microcysts in mitochondrial optic neuropathies: Prevalence and retinal layer thickness measurements. PLoS One. 2015;10(6):e0127906. doi: 10.1371/journal.pone.0127906
  34. Chen K, Rowley AP, Weiland JD, Humayun MS. Elastic properties of human posterior eye. J Biomed Mater Res A. 2014;102(6):2001–2007. doi: 10.1002/jbm.a.34858
  35. Gelfand JM, Cree BA, Nolan R, et al. Microcystic inner nuclear layer abnormalities and neuromyelitis optica. JAMA Neurol. 2013;70(5):629–633. doi: 10.1001/jamaneurol.2013.1832
  36. Wostyn P, De Groot V, Van Dam D, et al. The glymphatic system: A new player in ocular diseases? Invest Ophthalmol Vis Sci. 2016;57(13):5426–5427. doi: 10.1167/iovs.16-20262
  37. Murata N, Togano T, Miyamoto D, et al. Clinical evaluation of microcystic macular edema in patients with glaucoma. Eye (Lond). 2016;30(11):1502–1508. doi: 10.1038/eye.2016.190
  38. Brazerol J, Iliev ME, Höhn R, et al. Retrograde maculopathy in patients with glaucoma. J Glaucoma. 2017;26(5):423–429. doi: 10.1097/IJG.0000000000000633
  39. Jung KI, Ryu HK, Oh SE, et al. Thicker inner nuclear layer as a predictor of glaucoma progression and the impact of intraocular pressure fluctuation. J Clin Med. 2024;13(8):2312. doi: 10.3390/jcm13082312
  40. Jung KI, Kim JH, Park CK. α2-Adrenergic modulation of the glutamate receptor and transporter function in a chronic ocular hypertension model. Eur J Pharmacol. 2015;765:274–283. doi: 10.1016/j.ejphar.2015.08.035
  41. Joos KM, Li C, Sappington RM. Morphometric changes in the rat optic nerve following short-term intermittent elevations in intraocular pressure. Invest Ophthalmol Vis Sci. 2010;51(12):6431–6440. doi: 10.1167/iovs.10-5212
  42. Shin DY, Park HL, Shin H, et al. Fluctuation of intraocular pressure and vascular factors are associated with the development of epiretinal membrane in glaucoma. Am J Ophthalmol. 2023;254:69–79. doi: 10.1016/j.ajo.2023.06.001
  43. Mahmoudinezhad G, Salazar D, Morales E, et al. Risk factors for microcystic macular oedema in glaucoma. Br J Ophthalmol. 2023;107(4):505–510. doi: 10.1136/bjophthalmol-2021-320137
  44. Yousefi S, Sakai H, Murata H, et al. Asymmetric patterns of visual field defect in primary open-angle and primary angle-closure glaucoma. Invest Ophthalmol Vis Sci. 2018;59(3):1279–1287. doi: 10.1167/iovs.17-22980
  45. Huang-Link YM, Al-Hawasi A, Eveman I. Retrograde degeneration of visual pathway: Hemimacular thinning of retinal ganglion cell layer in progressive and active multiple sclerosis. J Neurol. 2014;261(12):2453–2456. doi: 10.1007/s00415-014-7538-x
  46. Lawlor M, Plant G. Anterior cerebral circulation infarction and retinal ganglion cell degeneration. Ophthalmology. 2014;121(3):e15–16. doi: 10.1016/j.ophtha.2013.11.016
  47. Vien L, DalPorto C, Yang D. Retrograde degeneration of retinal ganglion cells secondary to head trauma. Optom Vis Sci. 2017;94(1):125–134. doi: 10.1097/OPX.0000000000000899
  48. Handley SE, Vargha-Khadem F, Bowman RJ, Liasis A. Visual function 20 years after childhood hemispherectomy for intractable epilepsy. Am J Ophthalmol. 2017;177:81–89. doi: 10.1016/j.ajo.2017.02.014
  49. De Vries-Knoppert WA, Baaijen JC, Petzold A. Patterns of retrograde axonal degeneration in the visual system. Brain. 2019;142(9):2775–2786. doi: 10.1093/brain/awz221
  50. Monteiro ML, Sousa RM, Araújo RB, et al. Diagnostic ability of confocal near-infrared reflectance fundus imaging to detect retrograde microcystic maculopathy from chiasm compression. A comparative study with OCT findings. PLoS One. 2021;16(6):e0253323. doi: 10.1371/journal.pone.0253323
  51. Nakajima T, Roggia MF, Noda Y, Ueta T. Effect of internal limiting membrane peeling during vitrectomy for diabetic macular edema: Systematic review and meta-analysis. Retina. 2015;35(9):1719–1725. doi: 10.1097/IAE.0000000000000622
  52. Frisina R, Pinackatt SJ, Sartore M, et al. Cystoid macular edema after pars plana vitrectomy for idiopathic epiretinal membrane. Graefes Arch Clin Exp Ophthalmol. 2015;253(1):47–56. doi: 10.1007/s00417-014-2655-x
  53. Shiode Y, Morizane Y, Toshima S, et al. Surgical outcome of idiopathic epiretinal membranes with intraretinal cystic spaces. PLoS One. 2016;11(12):e0168555. doi: 10.1371/journal.pone.0168555
  54. Sigler EJ, Randolph JC, Charles S. Delayed onset inner nuclear layer cystic changes following internal limiting membrane removal for epimacular membrane. Graefes Arch Clin Exp Ophthalmol. 2013;251(7):1679–1685. doi: 10.1007/s00417-012-2253-8
  55. Govetto A, Sarraf D, Hubschman JP, et al. Distinctive mechanisms and patterns of exudative versus tractional intraretinal cystoid spaces as seen with multimodal imaging. Am J Ophthalmol. 2020;212:43–56. doi: 10.1016/j.ajo.2019.12.010
  56. Spaide RF. Retinal vascular cystoid macular edema: Review and new theory. Retina. 2016;36(10):1823–1842. doi: 10.1097/IAE.0000000000001158
  57. Peck T, Salabati M, Mahmoudzadeh R, et al. Epiretinal membrane surgery in eyes with glaucoma: Visual outcomes and clinical significance of inner microcystoid changes. Ophthalmol Retina. 2022;6(8):693–701. doi: 10.1016/j.oret.2022.02.016
  58. Dysli M, Ebneter A, Menke MN, et al. Patients with epiretinal membranes display retrograde maculopathy after surgical peeling of the internal limiting membrane. Retina. 2019;39(11):2132–2140. doi: 10.1097/IAE.0000000000002266
  59. Güler M, Urfalıoğlu S, Damar Güngör E, et al. Clinical and optical coherence tomography analysis of intraretinal microcysts in patients with epiretinal membrane. Semin Ophthalmol. 2021;36(8):787–793. doi: 10.1080/08820538.2021.1906915
  60. Cicinelli MV, Post M, Brambati M, et al. Associated factors and surgical outcomes of microcystoid macular edema and cone bouquet abnormalities in eyes with epiretinal membrane. Retina. 2022;42(8):1455–1464. doi: 10.1097/IAE.0000000000003492
  61. Govetto A, Francone A, Lucchini S, et al. Microcystoid macular edema in epiretinal membrane: Not a retrograde maculopathy. Am J Ophthalmol. 2025;272:48–57. doi: 10.1016/j.ajo.2024.12.027
  62. Mukenhirn M, Wang CH, Guyomar T, et al. Tight junctions control lumen morphology via hydrostatic pressure and junctional tension. Dev Cell. 2024;59(21):2866–2881.e8. doi: 10.1016/j.devcel.2024.07.016
  63. Kreitzer MA, Vredeveld M, Tinner K, et al. ATP-mediated increase in H+ efflux from retinal Müller cells of the axolotl. J Neurophysiol. 2024;131(1):124–136. doi: 10.1152/jn.00321.2023
  64. Ohashi K, Hayashi T, Utsunomiya K, Nishimura R. The mineralocorticoid receptor signal could be a new molecular target for the treatment of diabetic retinal complication. Expert Opin Ther Targets. 2022;26(5):479–486. doi: 10.1080/14728222.2022.2072730
  65. Nagashima T, Akiyama H, Nakamura K, et al. Posterior precortical vitreous pocket in stickler syndrome: A report of two cases. Cureus. 2024;16(5):e59633. doi: 10.7759/cureus.59633
  66. Zweifel SA, Engelbert M, Laud K, et al. Outer retinal tubulation: A novel optical coherence tomography finding. Arch Ophthalmol. 2009;127(12):1596–1602. doi: 10.1001/archophthalmol.2009.326
  67. Astroz P, Miere A, Amoroso F, et al. Subretinal transient hyporeflectivity in age-related macular degeneration: A spectral domain optical coherence tomography study. Retina. 2022;42(4):653–660. doi: 10.1097/IAE.0000000000003377
  68. Cohen SY, Dubois L, Nghiem-Buffet S, et al. Retinal pseudocysts in age-related geographic atrophy. Am J Ophthalmol. 2010;150(2):211–217.e1. doi: 10.1016/j.ajo.2010.02.019
  69. Motevasseli T, Jhingan M, Bartsch DU, et al. Progress evaluation in eyes with geographic atrophy and retina pseudocyst. Ophthalmol Retina. 2021;5(6):596–598. doi: 10.1016/j.oret.2020.11.005
  70. Querques G, Coscas F, Forte R, et al. Cystoid macular degeneration in exudative age-related macular degeneration. Am J Ophthalmol. 2011;152(1):100–107.e2. doi: 10.1016/j.ajo.2011.01.027
  71. Forte R, Cennamo G, Finelli ML, et al. Retinal micropseudocysts in diabetic retinopathy: Prospective functional and anatomic evaluation. Ophthalmic Res. 2012;48(1):6–11. doi: 10.1159/000334618
  72. Bhargava P, Calabresi PA. The expanding spectrum of aetiologies causing retinal microcystic macular change. Brain. 2013;136(Pt 11):3212–3214. doi: 10.1093/brain/awt295
  73. Francone A, Govetto A, Yun L, et al. Evaluation of non-exudative microcystoid macular abnormalities secondary to retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2021;259(12):3579–3588. doi: 10.1007/s00417-021-05250-9
  74. Tilgner E, Dalcegio Favretto M, Tuisl M, et al. Macular cystic changes as predictive factor for the recurrence of macular oedema in branch retinal vein occlusion. Acta Ophthalmol. 2017;95(7):e592–e596. doi: 10.1111/aos.13396
  75. Catania F, Allegrini D, Nembri A, et al. Macular microvascular modifications in progressive lamellar macular holes. Diagnostics (Basel). 2021;11(9):1717. doi: 10.3390/diagnostics11091717
  76. Powner MB, Gillies MC, Zhu M, et al. Loss of Müller’s cells and photoreceptors in macular telangiectasia type 2. Ophthalmology. 2013;120(11):2344–2352. doi: 10.1016/j.ophtha.2013.04.013
  77. Charbel Issa P, Finger RP, Kruse K, et al. Monthly ranibizumab for nonproliferative macular telangiectasia type 2: A 12-month prospective study. Am J Ophthalmol. 2011;151(5):876–886.e1. doi: 10.1016/j.ajo.2010.11.019
  78. Mrejen S, Balaratnasingam C, Kaden TR, et al. Long-term visual outcomes and causes of vision loss in chronic central serous chorioretinopathy. Ophthalmology. 2019;126(4):576–588. doi: 10.1016/j.ophtha.2018.12.048
  79. Phasukkijwatana N, Freund KB, Dolz-Marco R, et al. Peripapillary pachychoroid syndrome. Retina. 2018;38(9):1652–1667. doi: 10.1097/IAE.0000000000001907
  80. Testa F, Rossi S, Colucci R, et al. Macular abnormalities in Italian patients with retinitis pigmentosa. Br J Ophthalmol. 2014;98(7):946–950. doi: 10.1136/bjophthalmol-2013-304082
  81. Bringmann A, Reichenbach A, Wiedemann P. Pathomechanisms of cystoid macular edema. Ophthalmic Res. 2004;36(5):241–249. doi: 10.1159/000081203
  82. Hayreh SS. Submacular choroidal vascular bed watershed zones and their clinical importance. Am J Ophthalmol. 2010;150(6): 940–941; author reply 941–942. doi: 10.1016/j.ajo.2010.08.011
  83. Coscas G, De Benedetto U, Coscas F, et al. Hyperreflective dots: A new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration. Ophthalmologica. 2013;229(1):32–37. doi: 10.1159/000342159

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».