Microcystic macular edema: clinical significance and pathogenetic mechanisms
- Authors: Danilova E.A.1, Plokhikh I.V.1, Djanbekova L.M.2, Tyan A.E.2, Nafikova G.I.3, Antipina G.I.3, Bikbulatova A.I.3, Rybina Y.A.4, Khulagov M.S.5, Batdyeva M.I.6, Gaifullina K.M.3, Vasilyeva I.V.3, Krivosheeva A.E.1, Usmanov I.A.3
-
Affiliations:
- Kuban State Medical University
- Rostov State Medical University
- Bashkir State Medical University
- Yaroslavl State Medical University
- Ingush State University
- North Caucasian State Academy
- Issue: Vol 16, No 3 (2025)
- Pages: 58-70
- Section: Reviews
- URL: https://journals.rcsi.science/clinpractice/article/view/352031
- DOI: https://doi.org/10.17816/clinpract680846
- EDN: https://elibrary.ru/QAEGZM
- ID: 352031
Cite item
Abstract
Microcystic macular edema represents a specific type of intraretinal cystic changes, localizing predominantly in the inner nuclear layer and detectable using the optical coherence tomography. Contrary to the classic concepts on the macular edema as a result of vascular permeability, microcystic macular edema is not accompanied by exudation and it is perceived as the manifestation of neuroglial dysfunction, often associated with the damaging of the optic nerve. Initially described in patients with multiple sclerosis, microcystic macular edema was subsequently detected in the wide spectrum of diseases, including glaucoma, neuromyelitis optica spectrum disorders, diabetic retinopathy, occlusion of the retinal veins, senile macular degeneration and epiretinal membranes. The key pathogenetic mechanisms are considered the retrograde transsynaptic degeneration of the ganglionic cells in the retina and the functional/structural damage of the Muller’s cells, in particular, the impaired operation of the AQP4 aquaporin channels. The morphological features of the microcystic macular edema, its location and clinical significance vary depending on the main disease and in a number of cases can act as the early biomarker of the neurodegenerative process. The article contains the pathophysiological models, the clinical correlates and the modern methods of the diagnostics of microcystic macular edema with special emphasis on the role of multimodal visualization and artificial intelligence technologies. Taking into consideration the rates of accidental detection and the potential relation to the systemic diseases, microcystic macular edema should be considered not as an isolated ophthalmology condition, but as the component of wider neuroretinal disorder requiring interdisciplinary approach to the diagnostics and follow-up.
Full Text
##article.viewOnOriginalSite##About the authors
Elizaveta A. Danilova
Kuban State Medical University
Author for correspondence.
Email: neurosurg@bk.ru
ORCID iD: 0009-0002-4206-032X
Russian Federation, 4 Mitrofana Sedina st, Krasnodar, 350063
Ilona V. Plokhikh
Kuban State Medical University
Email: ilona-kirsanova@list.ru
ORCID iD: 0009-0003-3339-2290
Russian Federation, Krasnodar
Liana M. Djanbekova
Rostov State Medical University
Email: mm.mumakova@mail.ru
ORCID iD: 0009-0002-7785-3602
Russian Federation, Rostov-on-Don
Arkadiy E. Tyan
Rostov State Medical University
Email: arkashatyan@icloud.com
ORCID iD: 0009-0005-9749-6536
Russian Federation, Rostov-on-Don
Guzel I. Nafikova
Bashkir State Medical University
Email: gzzz1470@gmail.com
ORCID iD: 0009-0003-1393-0266
Russian Federation, Ufa
Guzel I. Antipina
Bashkir State Medical University
Email: g-gabbasova@bk.ru
ORCID iD: 0009-0006-6223-2175
Russian Federation, Ufa
Alina I. Bikbulatova
Bashkir State Medical University
Email: Alina.haibullina1997@gmail.com
ORCID iD: 0009-0002-1857-8831
Russian Federation, Ufa
Yulia A. Rybina
Yaroslavl State Medical University
Email: rubina.kosroma@mail.ru
ORCID iD: 0009-0005-1672-9212
Russian Federation, Yaroslavl
Muslim S. Khulagov
Ingush State University
Email: mxulagov@mail.ru
ORCID iD: 0009-0004-0835-7941
Russian Federation, Magas
Malika I. Batdyeva
North Caucasian State Academy
Email: malika011112@mail.ru
ORCID iD: 0009-0000-5432-6418
Russian Federation, Cherkessk
Kamilla M. Gaifullina
Bashkir State Medical University
Email: kamilla01gai@icloud.com
ORCID iD: 0009-0006-7784-7180
Russian Federation, Ufa
Inna V. Vasilyeva
Bashkir State Medical University
Email: inna.vasileva.01.01@mail.ru
ORCID iD: 0009-0001-0508-8174
Russian Federation, Ufa
Anastasia E. Krivosheeva
Kuban State Medical University
Email: n.arteva@yandex.ru
ORCID iD: 0009-0009-7276-1662
Russian Federation, Krasnodar
Ilmir A. Usmanov
Bashkir State Medical University
Email: ilmir.usmanov14@gmail.com
ORCID iD: 0009-0002-5499-0268
Russian Federation, Ufa
References
- Burggraaff MC, Trieu J, de Vries-Knoppert WA, et al. The clinical spectrum of microcystic macular edema. Invest Ophthalmol Vis Sci. 2014;55(2):952–961. doi: 10.1167/iovs.13-12912
- Панова И.Е., Гвазава В.Г. ОКТ-морфоструктурные варианты макулярного отека при срединном увеите // Офтальмология. 2024. Т. 21, № 4. С. 716–722. [Panova IE, Gvazava VG. OCT patterns of macular edema in intermediate uveitis. Ophthalmology. 2024;21(4):716–722. (In Russ.)]. doi: 10.18008/1816-5095-2024-4-716-722 EDN: YNGDGG
- Gelfand JM, Nolan R, Schwartz DM, et al. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain. 2012;135(Pt 6):1786–1793. doi: 10.1093/brain/aws098
- Бикбов М.М., Файзрахманов Р.Р., Зайнуллин Р.М., и др. Макулярный отек как проявление диабетической ретинопатии // Сахарный диабет. 2017. Т. 20, № 4. С. 263–269. [Bikbov MM, Fayzrakhmanov RR, Zaynullin RM, et al. Macular oedema as manifestation of diabetic retinopathy. Diabetes mellitus. 2017;20(4):263–269]. doi: 10.14341/DM8328 EDN: ZMZAON
- Bhatti MT, Mansukhani SA, Chen JJ. Microcystic macular edema in optic nerve glioma. Ophthalmology. 2020;127(7):930. doi: 10.1016/j.ophtha.2020.03.017
- Dwivedi A. Microcystic macular edema in a case of optic disc pit. Ophthalmol Retina. 2022;6(2):178. doi: 10.1016/j.oret.2021.09.011
- Lee DH, Park SE, Lee CS. Microcystic macular edema and cystoid macular edema before and after epiretinal membrane surgery. Retina. 2021;41(8):1652–1659. doi: 10.1097/IAE.0000000000003087
- Gaudric A, Audo I, Vignal C, et al. Non-vasogenic cystoid maculopathies. Prog Retin Eye Res. 2022;91:101092. doi: 10.1016/j.preteyeres.2022.101092
- Voide N, Borruat FX. Microcystic macular edema in optic nerve atrophy: A case series. Klin Monbl Augenheilkd. 2015;232(4):455–458. doi: 10.1055/s-0035-1545797
- Wen JC, Freedman SF, El-Dairi MA, Asrani S. Microcystic macular changes in primary open-angle glaucoma. J Glaucoma. 2016;25(3):258–262. doi: 10.1097/IJG.0000000000000129
- Wolff B, Azar G, Vasseur V, et al. Microcystic changes in the retinal internal nuclear layer associated with optic atrophy: A prospective study. J Ophthalmol. 2014;2014:395189. doi: 10.1155/2014/395189
- Abegg M, Dysli M, Wolf S, et al. Microcystic macular edema: Retrograde maculopathy caused by optic neuropathy. Ophthalmology. 2014;121(1):142–149. doi: 10.1016/j.ophtha.2013.08.045
- Saidha S, Sotirchos ES, Ibrahim MA, et al. Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: A retrospective study. Lancet Neurol. 2012;11(11):963–972. doi: 10.1016/S1474-4422(12)70213-2
- Monteiro ML, Araújo RB, Suzuki AC, et al. Homonymous hemianopic hyporeflective retinal abnormality on infrared confocal scanning laser photography: A novel sign of optic tract lesion. J Neuroophthalmol. 2016;36(1):46–49. doi: 10.1097/WNO.0000000000000278
- Goodyear MJ, Crewther SG, Junghans BM. A role for aquaporin-4 in fluid regulation in the inner retina. Vis Neurosci. 2009;26(2):159–165. doi: 10.1017/S0952523809090038
- Govetto A, Su D, Farajzadeh M, et al. Microcystoid macular changes in association with idiopathic epiretinal membranes in eyes with and without glaucoma: Clinical insights. Am J Ophthalmol. 2017;181:156–165. doi: 10.1016/j.ajo.2017.06.023
- Green AJ, McQuaid S, Hauser SL, et al. Ocular pathology in multiple sclerosis: Retinal atrophy and inflammation irrespective of disease duration. Brain. 2010;133(Pt 6):1591–1601. doi: 10.1093/brain/awq080
- Hasegawa T, Akagi T, Yoshikawa M, et al. Microcystic inner nuclear layer changes and retinal nerve fiber layer defects in eyes with glaucoma. PLoS One. 2015;10(6):e0130175. doi: 10.1371/journal.pone.0130175
- Gocho K, Kikuchi S, Kabuto T, et al. High-resolution en face images of microcystic macular edema in patients with autosomal dominant optic atrophy. Biomed Res Int. 2013;2013:676803. doi: 10.1155/2013/676803
- Brar M, Yuson R, Kozak I, et al. Correlation between morphologic features on spectral-domain optical coherence tomography and angiographic leakage patterns in macular edema. Retina. 2010;30(3):383–389. doi: 10.1097/IAE.0b013e3181cd4803
- Li J, Chen Y, Zhang Y, et al. Visual function and disability are associated with microcystic macular edema, macular and peripapillary vessel density in patients with neuromyelitis optica spectrum disorder. Front Neurol. 2022;13:1019959. doi: 10.3389/fneur.2022.1019959
- Srivastava R, Aslam M, Kalluri SR, et al. Potassium channel KIR4.1 as an immune target in multiple sclerosis. N Engl J Med. 2012;367(2):115–123. doi: 10.1056/NEJMoa1110740
- Saidha S, Syc SB, Durbin MK, et al. Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Mult Scler. 2011;17(12):1449–1463. doi: 10.1177/1352458511418630
- Saidha S, Syc SB, Ibrahim MA, et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain. 2011;134(Pt 2):518–533. doi: 10.1093/brain/awq346
- Kaufhold F, Zimmermann H, Schneider E, et al. Optic neuritis is associated with inner nuclear layer thickening and microcystic macular edema independently of multiple sclerosis. PLoS One. 2013;8(8):e71145. doi: 10.1371/journal.pone.0071145
- Naismith RT, Tutlam NT, Xu J, et al. Optical coherence tomography differs in neuromyelitis optica compared with multiple sclerosis. Neurology. 2009;72(12):1077–1082. doi: 10.1212/01.wnl.0000345042.53843.d5
- Ratchford JN, Quigg ME, Conger A, et al. Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology. 2009;73(4):302–308. doi: 10.1212/WNL.0b013e3181af78b8
- Reichenbach A, Wurm A, Pannicke T, et al. Müller cells as players in retinal degeneration and edema. Graefes Arch Clin Exp Ophthalmol. 2007;245(5):627–636. doi: 10.1007/s00417-006-0516-y
- Sotirchos ES, Saidha S, Byraiah G, et al. In vivo identification of morphologic retinal abnormalities in neuromyelitis optica. Neurology. 2013;80(15):1406–1414. doi: 10.1212/WNL.0b013e31828c2f7a
- Chapelle AC, Rakic JM, Plant GT. Nonarteritic anterior ischemic optic neuropathy: Cystic change in the inner nuclear layer caused by edema and retrograde maculopathy. Ophthalmol Sci. 2022;3(1):100230. doi: 10.1016/j.xops.2022.100230
- Abegg M, Zinkernagel M, Wolf S. Microcystic macular degeneration from optic neuropathy. Brain. 2012;135(Pt 12):e225. doi: 10.1093/brain/aws215
- Masri RA, Grünert U, Martin PR. Analysis of parvocellular and magnocellular visual pathways in human retina. J Neurosci. 2020;40(42):8132–8148. doi: 10.1523/JNEUROSCI.1671-20.2020
- Carbonelli M, La Morgia C, Savini G, et al. Macular microcysts in mitochondrial optic neuropathies: Prevalence and retinal layer thickness measurements. PLoS One. 2015;10(6):e0127906. doi: 10.1371/journal.pone.0127906
- Chen K, Rowley AP, Weiland JD, Humayun MS. Elastic properties of human posterior eye. J Biomed Mater Res A. 2014;102(6):2001–2007. doi: 10.1002/jbm.a.34858
- Gelfand JM, Cree BA, Nolan R, et al. Microcystic inner nuclear layer abnormalities and neuromyelitis optica. JAMA Neurol. 2013;70(5):629–633. doi: 10.1001/jamaneurol.2013.1832
- Wostyn P, De Groot V, Van Dam D, et al. The glymphatic system: A new player in ocular diseases? Invest Ophthalmol Vis Sci. 2016;57(13):5426–5427. doi: 10.1167/iovs.16-20262
- Murata N, Togano T, Miyamoto D, et al. Clinical evaluation of microcystic macular edema in patients with glaucoma. Eye (Lond). 2016;30(11):1502–1508. doi: 10.1038/eye.2016.190
- Brazerol J, Iliev ME, Höhn R, et al. Retrograde maculopathy in patients with glaucoma. J Glaucoma. 2017;26(5):423–429. doi: 10.1097/IJG.0000000000000633
- Jung KI, Ryu HK, Oh SE, et al. Thicker inner nuclear layer as a predictor of glaucoma progression and the impact of intraocular pressure fluctuation. J Clin Med. 2024;13(8):2312. doi: 10.3390/jcm13082312
- Jung KI, Kim JH, Park CK. α2-Adrenergic modulation of the glutamate receptor and transporter function in a chronic ocular hypertension model. Eur J Pharmacol. 2015;765:274–283. doi: 10.1016/j.ejphar.2015.08.035
- Joos KM, Li C, Sappington RM. Morphometric changes in the rat optic nerve following short-term intermittent elevations in intraocular pressure. Invest Ophthalmol Vis Sci. 2010;51(12):6431–6440. doi: 10.1167/iovs.10-5212
- Shin DY, Park HL, Shin H, et al. Fluctuation of intraocular pressure and vascular factors are associated with the development of epiretinal membrane in glaucoma. Am J Ophthalmol. 2023;254:69–79. doi: 10.1016/j.ajo.2023.06.001
- Mahmoudinezhad G, Salazar D, Morales E, et al. Risk factors for microcystic macular oedema in glaucoma. Br J Ophthalmol. 2023;107(4):505–510. doi: 10.1136/bjophthalmol-2021-320137
- Yousefi S, Sakai H, Murata H, et al. Asymmetric patterns of visual field defect in primary open-angle and primary angle-closure glaucoma. Invest Ophthalmol Vis Sci. 2018;59(3):1279–1287. doi: 10.1167/iovs.17-22980
- Huang-Link YM, Al-Hawasi A, Eveman I. Retrograde degeneration of visual pathway: Hemimacular thinning of retinal ganglion cell layer in progressive and active multiple sclerosis. J Neurol. 2014;261(12):2453–2456. doi: 10.1007/s00415-014-7538-x
- Lawlor M, Plant G. Anterior cerebral circulation infarction and retinal ganglion cell degeneration. Ophthalmology. 2014;121(3):e15–16. doi: 10.1016/j.ophtha.2013.11.016
- Vien L, DalPorto C, Yang D. Retrograde degeneration of retinal ganglion cells secondary to head trauma. Optom Vis Sci. 2017;94(1):125–134. doi: 10.1097/OPX.0000000000000899
- Handley SE, Vargha-Khadem F, Bowman RJ, Liasis A. Visual function 20 years after childhood hemispherectomy for intractable epilepsy. Am J Ophthalmol. 2017;177:81–89. doi: 10.1016/j.ajo.2017.02.014
- De Vries-Knoppert WA, Baaijen JC, Petzold A. Patterns of retrograde axonal degeneration in the visual system. Brain. 2019;142(9):2775–2786. doi: 10.1093/brain/awz221
- Monteiro ML, Sousa RM, Araújo RB, et al. Diagnostic ability of confocal near-infrared reflectance fundus imaging to detect retrograde microcystic maculopathy from chiasm compression. A comparative study with OCT findings. PLoS One. 2021;16(6):e0253323. doi: 10.1371/journal.pone.0253323
- Nakajima T, Roggia MF, Noda Y, Ueta T. Effect of internal limiting membrane peeling during vitrectomy for diabetic macular edema: Systematic review and meta-analysis. Retina. 2015;35(9):1719–1725. doi: 10.1097/IAE.0000000000000622
- Frisina R, Pinackatt SJ, Sartore M, et al. Cystoid macular edema after pars plana vitrectomy for idiopathic epiretinal membrane. Graefes Arch Clin Exp Ophthalmol. 2015;253(1):47–56. doi: 10.1007/s00417-014-2655-x
- Shiode Y, Morizane Y, Toshima S, et al. Surgical outcome of idiopathic epiretinal membranes with intraretinal cystic spaces. PLoS One. 2016;11(12):e0168555. doi: 10.1371/journal.pone.0168555
- Sigler EJ, Randolph JC, Charles S. Delayed onset inner nuclear layer cystic changes following internal limiting membrane removal for epimacular membrane. Graefes Arch Clin Exp Ophthalmol. 2013;251(7):1679–1685. doi: 10.1007/s00417-012-2253-8
- Govetto A, Sarraf D, Hubschman JP, et al. Distinctive mechanisms and patterns of exudative versus tractional intraretinal cystoid spaces as seen with multimodal imaging. Am J Ophthalmol. 2020;212:43–56. doi: 10.1016/j.ajo.2019.12.010
- Spaide RF. Retinal vascular cystoid macular edema: Review and new theory. Retina. 2016;36(10):1823–1842. doi: 10.1097/IAE.0000000000001158
- Peck T, Salabati M, Mahmoudzadeh R, et al. Epiretinal membrane surgery in eyes with glaucoma: Visual outcomes and clinical significance of inner microcystoid changes. Ophthalmol Retina. 2022;6(8):693–701. doi: 10.1016/j.oret.2022.02.016
- Dysli M, Ebneter A, Menke MN, et al. Patients with epiretinal membranes display retrograde maculopathy after surgical peeling of the internal limiting membrane. Retina. 2019;39(11):2132–2140. doi: 10.1097/IAE.0000000000002266
- Güler M, Urfalıoğlu S, Damar Güngör E, et al. Clinical and optical coherence tomography analysis of intraretinal microcysts in patients with epiretinal membrane. Semin Ophthalmol. 2021;36(8):787–793. doi: 10.1080/08820538.2021.1906915
- Cicinelli MV, Post M, Brambati M, et al. Associated factors and surgical outcomes of microcystoid macular edema and cone bouquet abnormalities in eyes with epiretinal membrane. Retina. 2022;42(8):1455–1464. doi: 10.1097/IAE.0000000000003492
- Govetto A, Francone A, Lucchini S, et al. Microcystoid macular edema in epiretinal membrane: Not a retrograde maculopathy. Am J Ophthalmol. 2025;272:48–57. doi: 10.1016/j.ajo.2024.12.027
- Mukenhirn M, Wang CH, Guyomar T, et al. Tight junctions control lumen morphology via hydrostatic pressure and junctional tension. Dev Cell. 2024;59(21):2866–2881.e8. doi: 10.1016/j.devcel.2024.07.016
- Kreitzer MA, Vredeveld M, Tinner K, et al. ATP-mediated increase in H+ efflux from retinal Müller cells of the axolotl. J Neurophysiol. 2024;131(1):124–136. doi: 10.1152/jn.00321.2023
- Ohashi K, Hayashi T, Utsunomiya K, Nishimura R. The mineralocorticoid receptor signal could be a new molecular target for the treatment of diabetic retinal complication. Expert Opin Ther Targets. 2022;26(5):479–486. doi: 10.1080/14728222.2022.2072730
- Nagashima T, Akiyama H, Nakamura K, et al. Posterior precortical vitreous pocket in stickler syndrome: A report of two cases. Cureus. 2024;16(5):e59633. doi: 10.7759/cureus.59633
- Zweifel SA, Engelbert M, Laud K, et al. Outer retinal tubulation: A novel optical coherence tomography finding. Arch Ophthalmol. 2009;127(12):1596–1602. doi: 10.1001/archophthalmol.2009.326
- Astroz P, Miere A, Amoroso F, et al. Subretinal transient hyporeflectivity in age-related macular degeneration: A spectral domain optical coherence tomography study. Retina. 2022;42(4):653–660. doi: 10.1097/IAE.0000000000003377
- Cohen SY, Dubois L, Nghiem-Buffet S, et al. Retinal pseudocysts in age-related geographic atrophy. Am J Ophthalmol. 2010;150(2):211–217.e1. doi: 10.1016/j.ajo.2010.02.019
- Motevasseli T, Jhingan M, Bartsch DU, et al. Progress evaluation in eyes with geographic atrophy and retina pseudocyst. Ophthalmol Retina. 2021;5(6):596–598. doi: 10.1016/j.oret.2020.11.005
- Querques G, Coscas F, Forte R, et al. Cystoid macular degeneration in exudative age-related macular degeneration. Am J Ophthalmol. 2011;152(1):100–107.e2. doi: 10.1016/j.ajo.2011.01.027
- Forte R, Cennamo G, Finelli ML, et al. Retinal micropseudocysts in diabetic retinopathy: Prospective functional and anatomic evaluation. Ophthalmic Res. 2012;48(1):6–11. doi: 10.1159/000334618
- Bhargava P, Calabresi PA. The expanding spectrum of aetiologies causing retinal microcystic macular change. Brain. 2013;136(Pt 11):3212–3214. doi: 10.1093/brain/awt295
- Francone A, Govetto A, Yun L, et al. Evaluation of non-exudative microcystoid macular abnormalities secondary to retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2021;259(12):3579–3588. doi: 10.1007/s00417-021-05250-9
- Tilgner E, Dalcegio Favretto M, Tuisl M, et al. Macular cystic changes as predictive factor for the recurrence of macular oedema in branch retinal vein occlusion. Acta Ophthalmol. 2017;95(7):e592–e596. doi: 10.1111/aos.13396
- Catania F, Allegrini D, Nembri A, et al. Macular microvascular modifications in progressive lamellar macular holes. Diagnostics (Basel). 2021;11(9):1717. doi: 10.3390/diagnostics11091717
- Powner MB, Gillies MC, Zhu M, et al. Loss of Müller’s cells and photoreceptors in macular telangiectasia type 2. Ophthalmology. 2013;120(11):2344–2352. doi: 10.1016/j.ophtha.2013.04.013
- Charbel Issa P, Finger RP, Kruse K, et al. Monthly ranibizumab for nonproliferative macular telangiectasia type 2: A 12-month prospective study. Am J Ophthalmol. 2011;151(5):876–886.e1. doi: 10.1016/j.ajo.2010.11.019
- Mrejen S, Balaratnasingam C, Kaden TR, et al. Long-term visual outcomes and causes of vision loss in chronic central serous chorioretinopathy. Ophthalmology. 2019;126(4):576–588. doi: 10.1016/j.ophtha.2018.12.048
- Phasukkijwatana N, Freund KB, Dolz-Marco R, et al. Peripapillary pachychoroid syndrome. Retina. 2018;38(9):1652–1667. doi: 10.1097/IAE.0000000000001907
- Testa F, Rossi S, Colucci R, et al. Macular abnormalities in Italian patients with retinitis pigmentosa. Br J Ophthalmol. 2014;98(7):946–950. doi: 10.1136/bjophthalmol-2013-304082
- Bringmann A, Reichenbach A, Wiedemann P. Pathomechanisms of cystoid macular edema. Ophthalmic Res. 2004;36(5):241–249. doi: 10.1159/000081203
- Hayreh SS. Submacular choroidal vascular bed watershed zones and their clinical importance. Am J Ophthalmol. 2010;150(6): 940–941; author reply 941–942. doi: 10.1016/j.ajo.2010.08.011
- Coscas G, De Benedetto U, Coscas F, et al. Hyperreflective dots: A new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration. Ophthalmologica. 2013;229(1):32–37. doi: 10.1159/000342159
Supplementary files


