Electrochemical measurements of the levels of nitric oxide metabolites in the blood serum

Cover Page

Cite item

Full Text

Abstract

Background: Sepsis is a serious clinical condition caused by a dysregulated immune response to infection resulting in multiple organ failure. In the pathogenesis of sepsis, especially that of septic shock, great importance is given to the endothelial marker of vascular regulation, nitric oxide (NO). In septic shock, dysregulation of the vascular tone plays a key role in the development of hypotension. Therefore, the control of the level of nitric oxide and its stable metabolites in critically ill patients is a very important task.

Aim: the aim of this study was to evaluate the potential of the electrochemical nitrite detection in the patients’ blood serum.

Methods: The levels of nitric oxide stable metabolites in the blood serum of healthy individuals (n=20) and septic patients (n=25) were studied by the electrochemical method using a composite electrode and by the spectrophotometric method using the Griess reagent.

Results: The data in the groups of healthy people and patients with sepsis differ significantly (p <0.00001) both when measured using electrochemical and spectrophotometric methods. The median value of the current response in healthy people was 0.41 µA (0.33; 0.55), and the total content of nitric oxide metabolites (NOx) was 26.8 µmol/L (20.8; 31.0), while in patients with sepsis, these values were 0.79 µA (0.61; 1.28) and 38.89 µmol/L (29.64; 57.45), respectively. A negative correlation was found between the data obtained for practically healthy persons (r=-0.696, p=0.0007).

Conclusion: The obtained results allow us to conclude that the nitrite measurement in the blood serum by amperometry using a composite electrode is promising as a diagnostic technique.

About the authors

Irina V. Goroncharovskaya

N.V. Sklifosovsky Research Institute for Emergency Medicine

Author for correspondence.
Email: goririna22@gmail.com
ORCID iD: 0000-0003-0113-306X
SPIN-code: 3526-6514

PhD

Russian Federation, 3 Bolshaya Sukharevskaya square, 129090 Moscow

Anatoly K. Evseev

N.V. Sklifosovsky Research Institute for Emergency Medicine

Email: anatolevseev@gmail.com
ORCID iD: 0000-0002-0832-3272
SPIN-code: 1380-7224

Dr. Sci (Chem.), PhD

Russian Federation, 3 Bolshaya Sukharevskaya square, 129090 Moscow

Elena V. Klychnikova

N.V. Sklifosovsky Research Institute for Emergency Medicine

Email: klychnikovaev@mail.ru
ORCID iD: 0000-0002-3349-0451
SPIN-code: 6311-6795

MD, PhD

Russian Federation, 3 Bolshaya Sukharevskaya square, 129090 Moscow

Elizaveta V. Tazina

N.V. Sklifosovsky Research Institute for Emergency Medicine

Email: TazinaEV@sklif.mos.ru
ORCID iD: 0000-0001-6079-1228
SPIN-code: 1994-3086

PhD

Russian Federation, 3 Bolshaya Sukharevskaya square, 129090 Moscow

Alina S. Bogdanova

N.V. Sklifosovsky Research Institute for Emergency Medicine

Email: BogdanovaAS@sklif.mos.ru
ORCID iD: 0000-0002-6608-8493
SPIN-code: 8908-1035

младший научный сотрудник клинико-биохимической лаборатории экстренных методов исследования

Russian Federation, 3 Bolshaya Sukharevskaya square, 129090 Moscow

Aslan K. Shabanov

N.V. Sklifosovsky Research Institute for Emergency Medicine

Email: ShabanovAK@sklif.mos.ru
ORCID iD: 0000-0002-3417-2682
SPIN-code: 8501-3735

MD, PhD, Assistant Professor

Russian Federation, 3 Bolshaya Sukharevskaya square, 129090 Moscow

Sergey S. Petrikov

N.V. Sklifosovsky Research Institute for Emergency Medicine

Email: PetrikovSS@sklif.mos.ru
ORCID iD: 0000-0003-3292-8789

MD, PhD, Corresponding Member of the Russian Academy of Sciences

Russian Federation, 3 Bolshaya Sukharevskaya square, 129090 Moscow

References

  1. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287
  2. Gotts JE, Matthay MA. Sepsis: Pathophysiology and clinical management. BMJ. 2016;353:i1585. doi: 10.1136/bmj.i1585
  3. Boisrame-Helms J, Kremer H, Schini-Kerth V, Meziani F. Endothelial dysfunction in sepsis. Curr Vasc Pharmacol. 2013; 11(2):150–160.
  4. Loughran PA, Lei Z, Xu L, et al. Nitric oxide in sepsis and hemorrhagic shock: Beneficial or detrimental? In: Ignarro L.G., ed. Nitric Oxide: Biology and Pathobiology. 3rd ed. New York; 2017. Р. 289–300.
  5. Yadav S, Verma T, Pathak S, Nandi D. Understanding the roles of nitric oxide during sepsis, an inflammatory disorder. In: Morbidelli L., ed. Therapeutic application of nitric oxide in cancer and inflammatory disorders. New York; 2019. Р. 243–276.
  6. Kothari N, Bogra J, Kohli M, et al. Role of active nitrogen molecules in progression of septic shock. Acta Anaesthesiol Scand. 2012;56(3):307–315. doi: 10.1111/j.1399-6576.2011.02607.x
  7. Ho JT, Chapman MJ, O’Connor S, et al. Characteristics of plasma NOx levels in severe sepsis: High interindividual variability and correlation with illness severity, but lack of correlation with cortisol levels. Clin Endocrinol. 2010;73(3): 413–420. doi: 10.1111/j.1365-2265.2010.03817.x
  8. Mitaka C, Hirata Y, Yokoyama K, et al. Relationships of circulating nitrite/nitrate levels to severity and multiple organ dysfunction syndrome in systemic inflammatory response syndrome. Shock. 2003;19(4):305–309. doi: 10.1097/00024382-200304000-00002
  9. Lorente L, Gómez-Bernal F, Martín MM, et al. High serum nitrates levels in non-survivor COVID-19 patients. Med Intensiva. 2022;46(3):132–139. doi: 10.1016/j.medine.2020.10.007
  10. Клычникова Е.В., Тазина Е.В., Рей С.И., и др. Оценка прогностической значимости биохимических маркеров окислительного стресса, эндогенной интоксикации и сосудистой регуляции в развитии неблагоприятных исходов у больных с сепсисом // Неотложная медицинская помощь. Журнал им. Н.В. Склифосовского. 2016. № 2. С. 25–30. [Klychnikova EV, Tazina EV, Rei SI, et al. Evaluation of prognostic significance for biochemical markers of oxidative stress, endogenous intoxication and vascular regulation in the development of unfavorable outcomes in patients with sepsis. Russian Sklifosovsky Journal Emergency Medical Care. 2016;(2):25–30. (In Russ).]
  11. Yu MH, Chen MH, Han F. Prognostic value of the biomarkers serum amyloid A and nitric oxide in patients with sepsis. Int Immunopharmacol. 2018;62:287–292. doi: 10.1016/j.intimp.2018.07.024
  12. Bryan NS, Grisham MB. Methods to detect nitric oxide and its metabolites in biological samples. Free Radic Biol Med. 2007;43(5):645–657. doi: 10.1016/j.freeradbiomed.2007.04.026
  13. Крюков А.Ю., Беспрозванная Р., Горончаровская И.В., и др. Возможности использования композитного электрода на основе углеродных нанотрубок для определения нитрита в водных и биологических средах // Известия высших учебных заведений. Серия: Химия и химическая технология. 2021. Т. 64, № 7. С. 21–26. [Kryukov AYu, Bezprozvannaya R, Goroncharovskaya IV, et al. Possibilities of using composite electrode based on carbon nanotubes for determination of nitrite in aqueous and biological media. Izvestiya vysshikh uchebnykh zavedenii. Khimiya khimicheskaya tekhnologiya. 2021;64(7):21–26. (In Russ).] doi: 10.6060/ivkkt.20216406.6381
  14. Голиков П.П., Николаева Н.Ю. Метод определения нитрата/нитрита (NOх) в сыворотке крови // Биомедицинская химия. 2004. Т. 50, № 1. С. 79–85. [Golikov PP, Nikolayeva NYu. Method of the measurement of nitrite/nitrate (NOx) in serum. Biomeditsinskaya Khimiya. 2004;50(1):79–85. (In Russ).]
  15. Голиков П.П. Оксид азота в клинике неотложных заболеваний. Москва: Медпрактика-М, 2004. 179 с. [Golikov PP. Nitric oxide in the clinic of urgent diseases. Moscow: Medpraktika-M; 2004. 179 p. (In Russ).]
  16. Lauer T, Preik M, Rassaf T, et al. Plasma nitrite rather than nitrate reflects regional endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action. Proc Natl Acad Sci USA. 2001;98(22):12814–12819. doi: 10.1073/pnas.221381098
  17. Kleinbongard P, Dejam A, Lauer T. Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radic Biol Med. 2003;35(7):790–796. doi: 10.1016/s0891-5849(03)00406-4
  18. Dai J, Deng D, Yuan Y, et al. Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly (toluidine blue). Microchimica Acta. 2016;183(5):1553–1561. doi: 10.1007/s00604-016-1773-z
  19. Xu GR, Xu G, Xu ML, et al. Amperometric determination of nitrite at poly(methylene blue)-modified glassy carbon electrode. Bull Korean Chem Soc. 2012;33(2):415–419. doi: 10.5012/bkcs.2012.33.2.415

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Chronoamperograms of a composite electrode when the blood serum of a donor (1) and of a septic patient (2) are added to a solution of sodium phosphate buffered saline (pH 7.4).

Download (1MB)

Copyright (c) 2023 Goroncharovskaya I.V., Evseev A.K., Klychnikova E.V., Tazina E.V., Bogdanova A.S., Shabanov A.K., Petrikov S.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies