Клинические проявления и механизмы формирования неврологических нарушений у пациентов с вибрационной болезнью

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В обзоре представлен анализ литературных источников, посвященных изучению изменений со стороны нервной системы у пациентов с вибрационной болезнью. Вибрационно-опосредованная клеточная гипоксия, возникающая вследствие спастических изменений сосудов, фазовых колебаний внутрисосудистого давления, нарушения крово- и лимфооттока, вызывает подавление энергетического обмена, способствует нарушениям на уровне рецепторных (глутаматные, ГАМКергические, дофаминовые и холинергические) и синаптических структур, проводников болевой и температурной чувствительности (демиелинизация), анализирующих нейронов в теменной области мозга, регуляторных белков нервной ткани (NF-200, GFAP S-100). Низкоамплитудный, нерегулярный, дезорганизованный и иногда деформированный спектр электроэнцефалограммы с преобладанием волны альфа-диапазона и сдвигом альфа-ритма влево отражает изменения спонтанной электрической активности структур мозга у больных. С увеличением стажевой дозы вибрационно-шумового воздействия происходит смена доминирующей альфа-активности на медленноволновую или полиритмичную. Легкие и умеренные диффузные изменения в головном мозге приобретают очаговый характер, на диэнцефальном уровне нарушаются корково-подкорковые взаимосвязи, создавая патофизиологическую основу для нейросенсорной (сенсоневральной) тугоухости, особенно у пациентов с генетической предрасположенностью, опосредованной генами, кодирующими белки системы теплового шока. Психоэмоциональный статус больных характеризуется ипохондрической сосредоточенностью на состоянии здоровья, психической дизадаптацией, психоэмоциональными нарушениями в виде тревожности, депрессивной настроенности. Проведенный анализ литературных источников о механизмах формирования неврологических нарушений у пациентов с вибрационной болезнью выявил отсутствие данных о состоянии многокомпонентной системы грелина, взаимодействующей с рецепторами типа GHSR-1A и GHSR-1В, что определяет новый вектор в дальнейших экспериментальных и клинических исследованиях.

Об авторах

Виктория Владимировна Воробьева

Военно-медицинская академия им. С.М. Кирова

Автор, ответственный за переписку.
Email: v.v.vorobeva@mail.ru
ORCID iD: 0000-0001-6257-7129
SPIN-код: 2556-2770

д-р мед. наук, старший преподаватель кафедры фармакологии

Россия, Санкт-Петербург

Ольга Сергеевна Левченкова

Смоленский государственный медицинский университет

Email: novikov.farm@yandex.ru
ORCID iD: 0000-0002-9595-6982
SPIN-код: 2888-6150

д-р. мед. наук, доцент кафедры фармакологии

Россия, Смоленск

Список литературы

  1. Rukavishnikov VS, Pankov VA, Kuleshova MV, et al. On theory of sensory conflict under exposure to physical factors: main principles and concepts of formation. Russian journal of occupational health and industrial ecology. 2015;(4):1–6. (In Russ.)
  2. Bukhtiyarov IV, Tikhonova GI, Betts KV, et al. Morbidity, disability and mortality of the working-age population in Russia. Russian journal of occupational health and industrial ecology. 2022;62(12): 791–796. (In Russ.) doi: 10.31089/1026-9428-2022-62-12-791-796
  3. Smirnova EL, Poteryaeva EL, Ivanova AA, et al. Association of ID polymorphism of the CASP8 gene with vibration disease. Russian journal of occupational health and industrial ecology. 2022;62(12): 809–813. (In Russ.) doi: 10.31089/1026-9428-2022-62-12-809-813
  4. Yakimova NL, Lizarev VA, Pankov AV, et al. Neurophysiological and morphological effects in the post-exposure vibration period during experimental modeling. Russian journal of occupational health and industrial ecology. 2019;59(5):284–290. (In Russ.) doi: 10.31089/1026-9428-2019-59-5-284-290
  5. Rukavishnikov VS, Bodienkova GM, Kurchevenko SI, et al. Role of neuroautoimmune integration in pathogenesis of vibration disease. Russian journal of occupational health and industrial ecology. 2017;(1):17–20. (In Russ.)
  6. Kiryakov VA, Pavlovskaya NA, Soukhova AV. Criteria for informative laboratory biomarkers selection in occupational medicine (analytic literature review). Russian journal of occupational health and industrial ecology. 2010;(12):22–27. (In Russ.)
  7. Saarkoppel’ LM, Kir’yakov VA, Oshkoderov OA. Role of contemporary biomarkers in vibration disease diagnosis. Russian journal of occupational health and industrial ecology. 2017;(2):6–11. (In Russ.)
  8. Ganovitch EA, Semenikhin VA. Dysfunction of cognitive and memory spheres during vibration disease in miners of Kouzbass. Russian journal of occupational health and industrial ecology. 2011;(12):44–51. (In Russ.)
  9. Vorobieva VV, Shabanov PD. Vibratsionnaya model’ gipoksicheskogo tipa kletochnogo metabolizma, otsenennaya na kardiomiotsitakh krolika. Bulletin of Experimental Biology and Medicine. 2009;147(6):712–715. (In Russ.)
  10. Vorobieva VV, Shabanov PD. Ehkzogennaya yantarnaya kislota umen’shaet vibratsionno-oposredovannye narusheniya ehnergeticheskogo obmena v kardiomiotsitakh krolika. Journal of Evolutionary Biochemistry and Physiology. 2009;95(8):857–864. (In Russ.)
  11. Vorobieva VV, Shabanov PD. Tissue specific peculiarities of vibration-induced hypoxia of the rabbit heart, liver and kidney. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(1): 46–62. (In Russ.) doi: 10.17816/RCF14146-62
  12. Vorobieva VV, Shabanov PD. Cellular mechanisms of hypoxia development in the tissues of experimental animals under varying characteristics of vibration exposure. Reviews on Clinical Pharmacology and Drug Therapy. 2019;17(3):59–70. (In Russ.) doi: 10.17816/RCF17359-70
  13. Funtikova IS, Smirnova EL, Poteryaeva EL, Maksimov VN. The role of molecular-biological characteristics of the organism in the development of professional sensorineural hearing loss. Russian journal of occupational health and industrial ecology. 2022;62(5): 322–330. (In Russ.) doi: 10.31089/1026-9428-2022-62-5-322-330
  14. Kartapoltseva NV, Katamanova EV, Rusanova DV. Features of nervous system involvement under stress influence by occupational physical factors. Russian journal of occupational health and industrial ecology. 2007;(6):43–47. (In Russ.)
  15. Ulanovskaya EV, Shilov VV, Kovshov AA, et al. Early diagnosis of the upper extremities vessels occupational diseases in machine-building workers. Russian journal of occupational health and industrial ecology. 2022;62(8):520–525. (In Russ.) doi: 10.31089/1026-9428-2022-62-8-520-525
  16. Vorobieva VV, Levchenkova OS, Shabanov PD. Biochemical mechanisms of the energy-protective action of blockers of slow high-threshold L-type calcium channels. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(4):395–405. (In Russ.) doi: 10.17816/RCF204395-405
  17. Vorobieva VV, Levchenkova OS, Shabanov PD. Blockade of rabbit cardiomyocyte calcium channels restores the activity of enzyme-substrate complexes of the respiratory chain in a model of vibration-mediated hypoxia. Journal Biomed. 2022;18(4):63–73. (In Russ.) doi: 10.33647/2074-5982-18-4-63-73
  18. Pankov VA, Katamanova EV, Kuleshova MV, et al. Dynamics of morphofunctional state of central nervous system in white rates exposed to vibration. Russian journal of occupational health and industrial ecology. 2014;(4):37–44. (In Russ.)
  19. Salmina AB, Gorina YV, Bolshakova AV, Vlasova OL. Analysis of main world trends in objectivization of protocols for behavioral testing of laboratory animals with brain pathology. Journal Biomed. 2023;19(1):34–46. (In Russ.) doi: 10.33647/2074-5982-19-1-34-46
  20. Prokopenko LV, Courierov NN, Lagutina AV, Pochtariova ES. Substantiation of risk-oriented hygienic criteria and classification of working conditions by noise, taking into account the group attributive (excessive) risk of hearing loss. Russian journal of occupational health and industrial ecology. 2022;62(3):185–192. (In Russ.) doi: 10.31089/1026-9428-2022-62-3-185-192
  21. Kartapoltseva NV, Katamanova EV, Rusanova DV. Features of nervous system involvement under stress influence by occupational physical factors. Russian journal of occupational health and industrial ecology. 2007;(6):43–47. (In Russ.)
  22. Ulanovskaya EV, Shilov VV, Kovshov AA, et al. Early diagnosis of the upper extremities vessels occupational diseases in machine-building workers. Russian journal of occupational health and industrial ecology. 2022;62(8):520–525. (In Russ.) doi: 10.31089/1026-9428-2022-62-8-520-525
  23. Korzenyova EV, Sinyova EL. Cardiovascular diseases in workers engaged into metal mining industry and mechanical engineering. Russian journal of occupational health and industrial ecology. 2007;(10):26–31. (In Russ.)
  24. Melentev AV, Serebryakov PV, Zheglova AV. Influence of noise and vibration on nervous regulation of heart. Russian journal of occupational health and industrial ecology. 2018;(9):19–23. (In Russ.) doi: 10.31089/1026-9428-2018-9-19-23
  25. Bakirov AB, Salavatova LKh, Abdrakhmanova ER, et al. Diagnostic methods of the impact on the life’s quality of lumbar pain syndromes in workers of harmful industries. Russian journal of occupational health and industrial ecology. 2022;62(4):259–265. (In Russ.) doi: 10.31089/1026-9428-2022-62-4-259-265
  26. Yamshchikova AV, Fleishman AN, Gidayatova MO, Kungurova AA. The effect of ischemic preconditioning on the course of polyneuropathy in vibration disease. Russian journal of occupational health and industrial ecology. 2022;61(1):59–63. (In Russ.) doi: 10.31089/1026-9428-2022-62-1-59-63
  27. Levchenkova OS, Novikov VE, Kulagin KN, Ponamareva NS. Influence of combined pharmacological and hypoxic preconditioning on animal survival and functional activity of CNS during model cerebral ischemia. Experimental and Clinical Pharmacology. 2016;79(2): 84–89. (In Russ.) doi: 10.30906/0869-2092-2016-79-6-3-8
  28. Poteryaeva EL, Yashnikova MV, Doronin BM, et al. A method for predicting the development of stroke in men working under the influence of local vibration. Russian journal of occupational health and industrial ecology. 2022;62(3):159–168. (In Russ.) doi: 10.31089/026-9428-2022-62-3-159-168
  29. Sarkisyan SG, Chavushyan VA, Kamenetskii VS, et al. Vliyanie stimulyatsii gipotalyamicheskikh yader na neirony nizhnego vestibulyarnogo yadra posle dlitel’nogo vibratsionnogo vozdeistviya i vvedeniya obogashchennogo prolinom peptida-1. Journal of Evolutionary Biochemistry and Physiology. 2015;101(5):538–549. (In Russ.)
  30. Shevchenko OI, Katamanova EV, Lakhman OL. The relationship of electroencephalography (EEG) and neuroenergocarting indicators in vibration disease. Russian journal of occupational health and industrial ecology. 2022;62(12):814–820. (In Russ.) doi: 10.31089/1026-9428-2022-62-12-814-820
  31. Adeninskaya EE, Simonova NI, Mazitova NN, NIzyaeva IV. The principles of noise induced hearing loss diagnostics in modern Russia (systematic review). The Bulletin of Contemporary Clinical Medicine. 2017;10(3):48–56. (In Russ.) doi: 10.20969/VSKM.2017.10(3).48-55
  32. Zinikin VN, Sheshegov PM, Chistov SD. The clinical aspects of occupational sensorineural impairment of hearing of the acoustic origin. Bulletin of Otorhinolaryngology. 2015;(6):65–70. (In Russ.) doi: 10.17116/otorino201580665-70
  33. Kartapoltseva NV, Katamanova EV. Characteristics of long latent auditory evoked potentials under workers’ exposure to occupational local vibration and noise. Russian journal of occupational health and industrial ecology. 2009;(1):15–17. (In Russ.)
  34. Kuleshova MV. Impact of vibration on the workers’ psychological health. Russian journal of occupational health and industrial ecology. 2023;63(1):47–52. (In Russ.) doi: 10.31089/1026-9428-2023-63-1-47-52
  35. Kostenko NA, Bukhtiyarov IV, Zhovnerchuk EV, et al. Working conditions, medical support and morbidity of stress-related neurotic disorders among Russian Railways employees. Russian Journal of Occupational Health and Industrial Ecology. 2023;63(6):379–385. (In Russ.) doi: 10.31089/1026-9428-2023-63-6-379-385
  36. Vorobieva VV, Shabanov PD. Exposure to whole body vibration impairs the functional activity of the energy producing system in rabbit myocardium. Biophysics. 2019;64(2):337–342. doi: 10.1134/S0006350919020210
  37. Vorobieva VV, Shabanov PD. Tissue-specific peculiarities of vibration-induced hypoxia in rabbit liver and kidney. Bulletin of Experimental Biology and Medicine. 2019;167(5):621–623. DOI: 101007/s10517-019-04583-0
  38. Vorobieva VV, Shabanov РD. A change in the content of endogenous energy substrates in rabbit myocardium mitochondria depending upon frequency and duration of vibration. Biophysics. 2021;66(4):720–723. doi: 10.1134/S0006350921040229
  39. Chastukhin DS, Borodin AV, Khodorov BI. Mathematical modeling of delayed calcium deregulation in brain neurons caused by hyperstimulation of glutamate receptors. Biophysics. 2014;59(2):236–247. doi: 10.1134/s0006350914020067
  40. Аkopova OV, Kolchinskaya LI, Nosar VI, et al. Еffect of potential-dependent potassium uptake on production of reactive oxygen species in rat brain mitochondria. Biochemistry. 2014;79(1):44–53. doi: 10.1134/s0006297914010076
  41. Chernorudskiy AL, Zito E. Regulation of calcium homeostasis by ER redox: a close-up of the ER/mitochondria connection. J Mol Biol. 2017;429(5):620–632. doi: 10.1016/j.jmb.2017.01.017
  42. Kostjuk IF, Kapoustnik VA. Role of intracellular calcium metabolism in vasospasm formation during vibration disease. Russian journal of occupational health and industrial ecology. 2004;(7):14–18. (In Russ.)
  43. Vorobieva VV, Levchenkova OS, Shabanov PD. Pathophysiological mechanisms of neurological disorders in experimental animals exposed to vibration. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(3):213–224. (In Russ.) doi: 10.17816/RCF183213-224
  44. Schödel J, Oikonomopoulos S, Ragoussis J, et al. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood. 2011;117(23):207–217. doi: 10.1182/blood-2010-10-314427
  45. Chavez JC, Baranova О, Lin J, Pichiule P. The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes. J Neurosci. 2006;26(37):9471–9481. doi: 10.1523/JNEUROSCI.2838-06.2006
  46. Gasanov SE, Kim AA, Dagda RK. The possible role of nonbilayer structures in regulating atp synthase activity in mitochondrial membranes. Biophysics. 2016;6(4):596–600. doi: 10.1134/S0006350916040084
  47. He W, Miao F-J, Lin DC-H, et al. Citric acid cycle intermediates as ligands for orphan G- protein-coupled receptors. Nature. 2004;429:188–193. doi: 10.1038/nature02488
  48. Shabanov PD, Lebedev AA, Bychkov ER, et al. Neurochemical mechanisms and pharmacology of ghrelins. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(1):5–22. (In Russ.) doi: 10.7816/RCF1815-22

© Эко-Вектор, 2023



 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».