Патофизиология микроРНК-146a при раке легких. Перспективы повышения эффективности таргетной терапии
- Авторы: Ващенко В.И.1, Ромашова Ю.Е.1, Шабанов П.Д.1
-
Учреждения:
- Военно-медицинская академия им. С.М. Кирова
- Выпуск: Том 19, № 4 (2021)
- Страницы: 359-381
- Раздел: Научные обзоры
- URL: https://journals.rcsi.science/RCF/article/view/100012
- DOI: https://doi.org/10.17816/RCF194359-381
- ID: 100012
Цитировать
Аннотация
Рак легких — широко распространенная злокачественная опухоль дыхательных путей, наносит значительный урон здоровью человека. МикроРНК (miRNAs) являются небольшими, некодируемыми РНК размером примерно 20–25 нуклеотидов, которые функционируют как мощные модуляторы мРНК и белковых продуктов соответствующего гена. МикроРНК может смодулировать много биологических процессов, в том числе дифференцировку, пролиферацию, некроз и апоптоз клеток, и играет ключевую роль в патогенезе различных видов раковых новообразований. Накопившиеся данные последних лет доказали, что микроРНК, особенно микроРНК-146a, являются критическими модуляторами врожденных систем иммунного ответа. Новая и захватывающая область исследований рака включила микроРНК для обнаружения и супрессии рака. Однако фактический механизм, используемый этими микроРНК, все еще неясен. МикроРНК применялись в качестве связанного с раком биомаркера в ряде исследований, что предполагает их нарушенную экспрессию в различных видах рака по сравнению со здоровыми тканями. Уровень экспрессии микроРНК может также использоваться, чтобы определить стадию болезни, а также помочь при раннем обнаружении рака. Установлено, что при раке легких, панкреатическом и гепатоцеллюлярном раке, раке желудка, пролиферации раковых клеток и в метастазах уровень микроРНК-146а сильно подавлен. Изменения в уровнях экспрессии микроРНК служат хорошим биомаркером и обладают высоким прогностическим потенциалом для улучшения терапии при раке легких. Модуляция содержания микроРНК задерживает эпителиально-мезенхимальный переход и улучшает терапевтическое действие лекарственных средств. Полученные результаты позволяют предположить, что микроРНК-146a оказывает влияние на экспрессию гена через различные сигнальные пути: ФНО-α, NF-κB, MEK-1/2, JNK-1/2. Требуется дальнейшее исследование, чтобы понять детали молекулярных механизмов микроРНК-146a при раке легких, а также должна быть более подробно проанализирована роль микроРНК-146a в качестве диагностического маркера рака легких.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Владимир Иванович Ващенко
Военно-медицинская академия им. С.М. Кирова
Автор, ответственный за переписку.
Email: vaschenko@yandex.ru
д-р биол. наук
Россия, 194044, Санкт-Петербург, ул. Академика Лебедева, д. 6Юлия Евгеньевна Ромашова
Военно-медицинская академия им. С.М. Кирова
Email: vladimir-vaschenko@yandex.ru
зав. отделом Центра крови и тканей
Россия, 194044, Санкт-Петербург, ул. Академика Лебедева, д. 6Петр Дмитриевич Шабанов
Военно-медицинская академия им. С.М. Кирова
Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-код: 8974-7477
д-р мед. наук, профессор
Россия, 194044, Санкт-Петербург, ул. Академика Лебедева, д. 6Список литературы
- Bogdanova ІM, Boltovskaya MN, Rakhmilevich AL, Artemyeva KA. Key role of tumor-associated macrophages in the progressing and metastasis of tumors. Immunology. 2019;40(4):41–47. (In Russ.) doi: 10.24411/0206-4952-2019-14005
- Laktionov KK, Reutova EV, Ardzinba MS, Mescheryakova NA. Targeted therapy of lung cancer with the ROS1 rearrangement. Medical council. 2017;(6):51–55. (In Russ.) doi: 10.21518/2079-2017.6.51-55
- Liasnikau KA, Shliakhtunou YA. Clinical significance of molecular-genetic markers in the diagnosis and personalization of lung cancer therapy. Vestnik of Vitebsk state medical university. 2020;19(2):7–18. (In Russ.) doi: 10.22263/2312-4156.2020.2.7
- Khvastunov RA, Skrypnikova GV, Usachev AA. Targetnaya terapiya v onkologii. Lekarstvennyi vestnik. 2014;8(4):3–10. (In Russ.)
- Shabanov PD, Vashchenko VI. Biological role of miRNA-146a at virus infections. Modern strategy of search of new safe pharmacological agents for treatment. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(2):145–174. (In Russ.) doi: 10.17816/RCF192145-174
- Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005;7(3):211–217. doi: 10.1016/j.ccr.2005.02.013
- Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev. 2013;32(3–4):643–671. doi: 10.1007/s10555-013-9444-6
- Bertoli G, Cava C, Castiglioni I. MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer. Theranostics. 2015;5(10):1122–1143. doi: 10.7150/thno.11543
- Bhaumik D, Scott GK, Schokrpur S, et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging. 2009;1(4):402–411. doi: 10.18632/aging.100042
- Bleau AM, Redrado M, Nistal-Villan E, et al. miR-146a targets c-met and abolishes colorectal cancer liver metastasis. Cancer Lett. 2018;414:257–267. doi: 10.1016/j.canlet.2017.11.008
- Boeri M, Verri C, Conte D, et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci USA. 2011;108(9):3713–3718. doi: 10.1073/pnas.1100048108
- Boldin MP, Teganov KD, Rao DJ, et al. miR-146q is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 2011;208(6):1189–1201. doi: 10.1084/jem.20101823
- Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492
- Brown KA, Aakre ME, Gorska AE, et al. Induction by transforming growth factor-beta1 of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res. 2004;6(3): R215–R231. doi: 10.1186/bcr778
- Bui N, Woodward B, Johnson A, Husain H. Novel Treatment Strategies for Brain Metastases in Non-small-cell Lung Cancer. Curr Treat Opt Oncol. 2016;17(5):25. doi: 10.1007/s11864-016-0400-x
- Burke JM, Kelenis DP, Kincaid RP, Sullivan CS. A central role for the primary microRNA stem in guiding the position and efficiency of Drosha processing of a viral pri-miRNA. RNA. 2014;20(7):1068–1077. doi: 10.1261/rna.044537.114
- Butkiewicz D, Krześniak M, Gdowicz-Kłosok A, et al. Polymorphisms in EGFR Gene Predict Clinical Outcome in Unresectable Non-Small Cell Lung Cancer Treated with Radiotherapy and Platinum-Based Chemoradiotherapy. Int J Mol Sci. 2021;22(11):5605. doi: 10.3390/ijms22115605
- Chang T-C, Yu D, Lee Y-S, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 2007;40(1):43–50. doi: 10.1038/ng.2007.30
- Chang Y-C, Jan C-I, Peng C-Y, et al. Activation of microRNA- 494-targeting Bmi1 and ADAM10 by silibinin ablates cancer stemness and predicts favourable prognostic value in head and neck squamous cell carcinomas. Oncotarget. 2015;6(27):24002–24016. doi: 10.18632/oncotarget.4365
- Chen G, Umelo IA, Lv S, et al. miR-146a Inhibits Cell Growth, Cell Migration and Induces Apoptosis in Non-Small Cell Lung Cancer Cells. PLoS ONE. 2013;8(3): e60317. doi: 10.1371/journal.pone.0060317
- Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006. doi: 10.1038/cr.2008.282
- Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436(7051):740–744. doi: 10.1038/nature03868
- Cheung KJ, Ewald AJ. A collective route to metastasis: Seeding by tumor cell clusters. Science. 2016;352(6282):167–169. doi: 10.1126/science.aaf6546
- Cho KB, Cho MK, Lee WY, et al. Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells. Cancer Lett. 2010;293(2):230–239. doi: 10.1016/j.canlet.2010.01.013
- Condrat CE, Thompson DC, Barbu MG, et al. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells. 2020;9(2):276. doi: 10.3390/cells9020276
- Cornett AL, Lutz CS. Regulation of COX-2 expression by miR-146a in lung cancer cells. RNA. 2014;20(9):1419–1430. doi: 10.1261/rna.044149.113
- Conti I, Simioni C, Varano G, et al. MicroRNAs Patterns as Potential Tools for Diagnostic and Prognostic Follow-Up in Cancer Survivorship. Cell. 2021;10(8):2069. doi: 10.3390/cells10082069
- Corral-Fernandez NE, Salgado-Bustamante M, Martinez-Leija ME, et al. Dysregulated miR-155 expression in peripheral blood mononuclear cells from patients with type 2 diabetes. Exp Clin Endocrinol Diabetes. 2013;121(6):347–353. doi: 10.1055/s-0033-1341516
- de Giorgio A, Krell J, Harding V, et al. Emerging Roles of Competing Endogenous RNAs in Cancer: Insights from the Regulation of PTEN. Mol Cell Biol. 2013;33(20):3976–3982. doi: 10.1128/MCB.00683-13
- Deiters A. Small Molecule Modifiers of the microRNA and RNA Interference Pathway. AAPS J. 2009;12(1):51–60. doi: 10.1208/s12248-009-9159-3
- Denli AM, Tops BBJ, Plasterk RHA, et al. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432(7014):231–235. doi: 10.1038/nature03049
- Du H, Li Y, Sun R, et al. CEACAM6 promotes cisplatin resistance in lung adenocarcinoma and is regulated by microRNA-146a and microRNA-26a. Thorac Cancer. 2020;11(9):2473–2482. doi: 10.1111/1759-7714.13558
- Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E. P-Body Formation is a Consequence, Not the Cause, of RNA-Mediated Gene Silencing. Mol Cell Biol. 2007;27(11):3970–3981. doi: 10.1128/MCB.00128-07
- Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat Rev Genet. 2008;9(2):102–114. doi: 10.1038/nrg2290
- Forloni M, Dogra SK, Dong Y, et al. miR-146a promotes the initiation and progression of melanoma by activating Notch signaling. eLife. 2014;3: e01460. doi: 10.7554/eLife.01460
- Fu J, Rodova M, Nanta R, et al. NPV-LDE-225 (Erismodegib) inhibits epithelial mesenchymal transition and self-renewal of glioblastoma initiating cells by regulating miR-21, miR-128, and miR-200. Neuro-oncology. 2013;15(6):691–706. doi: 10.1093/neuonc/not011
- Garg M. Targeting microRNAs in epithelial-to-mesenchymal transition-induced cancer stem cells: therapeutic approaches in cancer. Expert Opin Ther Targets. 2015;19(2):285–297. doi: 10.1517/14728222.2014.975794
- Garzon R, Marcucci G, Targeting CCM. MicroRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov. 2010;9(10):775–789. doi: 10.1038/nrd3179
- Ghany S, Riemke P, Schonheit J, et al. Macrophage development from HSCs requires PU.1-coordinated microRNA expression. Blood. 2011;118(8):2275–2284. doi: 10.1182/blood-2011-02-335141
- Ghuwalewala S, Ghatak D, Das S, et al. MiR-146a-dependent regulation of CD24/AKT/β-catenin axis drives cancer stem cell phenotype in oral squamous cell carcinoma. bioRxiv. 2019:429068. doi: 10.1101/429068
- Gibbons DL, Lin W, Creighton CJ, et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev. 2009;23(18):2140–2151. doi: 10.1101/gad.1820209
- Gilad S, Lithwick-Yanai G, Barshack I, et al. Classification of the Four Main Types of Lung Cancer Using a microRNA-Based Diagnostic Assay. J Mol Diagn. 2012;14(5):510–517. doi: 10.1016/j.jmoldx.2012.03.004
- Gregory RI, Yan K-P, Amuthan G, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432(7014):235–240. doi: 10.1038/nature03120
- Gomes M, Teixeira AL, Coelho A, et al. The Role of Inflammation in Lung Cancer. In: B.B. Aggarwal, B. Sung, S.C. Gupta, editors. Advances in Experimental Medicine and Biology. Switzerland, Basel: Springer Basel, 2014. P. 1–23. doi: 10.1007/978-3-0348-0837-8_1
- Hagemann T, Wilson J, Kulbe H, et al. Macrophages Induce Invasiveness of Epithelial Cancer Cells Via NF-κB and JNK. J Immunol. 2005;175(2):1197–1205. doi: 10.4049/jimmunol.175.2.1197
- Han J, Lee Y, Yeom K-H, et al. Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex. Cell. 2006;125(5):887–901. doi: 10.1016/j.cell.2006.03.043
- Han J. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016–3027. doi: 10.1101/gad.1262504
- Han W, Du X, Liu M, et al. Increased expression of long non-coding RNA SNHG16 correlates with tumor progression and poor prognosis in non-small cell lung cancer. Int J Biol Macromol. 2019;121:270–278. doi: 10.1016/j.ijbiomac.2018.10.004
- Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646–674. doi: 10.1016/j.cell.2011.02.013
- Hata A, Kashima R. Dysregulation of microRNA biogenesis machinery in cancer. Crit Rev Biochem Mol Biol. 2016;51(3):121–134. doi: 10.3109/10409238.2015.1117054
- Hay ED, Zuk A. Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am J Kidney Dis. 1995;26(4):678–690. doi: 10.1016/0272-6386(95)90610-x
- He H, Xu C, Zheng L, et al. Polyphyllin VII induces apoptotic cell death via inhibition of the PI3K/Akt and NF-κB pathways in A549 human lung cancer cells. Mol Med Rep. 2020;21(2):597–606. doi: 10.3892/mmr.2019.10879
- Heuberger J, Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol. 2010;2(2): a002915. doi: 10.1101/cshperspect.a002915
- Huang WT, He RQ, Li XJ, et al. miR-146a-5p targets TCSF and influences cell growth and apoptosis to repress NSCLC progression. Oncol Rep. 2019;41(4):2226–2240. doi: 10.3892/or.2019.7030
- Jiang P, Jia W, Wei X, et al. MicroRNA-146a regulates cisplatin-resistance of non-small cell lung cancer cells by targeting NF-kappaB pathway. Int J Clin Exp Pathol. 2017;10(12):11545–11553.eCollection 2017.
- Jiang WG, Sanders AJ, Katoh M, et al. Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin Cancer Biol. 2015;35(Suppl): S244–S275. doi: 10.1016/j.semcancer.2015.03.008
- Jung YY, Shanmugam MK, Narula AS, et al. Oxymatrine Attenuates Tumor Growth and Deactivates STAT5 Signaling in a Lung Cancer Xenograft Model. Cancers. 2019;11(1):49. doi: 10.3390/cancers11010049
- Iacona JR, Monteleone NJ, Lutz CS. miR-146a suppresses 5-lipoxygenase activating protein (FLAP) expression and Leukotriene B4 production in lung cancer cells. Oncotarget. 2018;9(42):26751–26769. doi: 10.18632/oncotarget.25482
- Kim J, Yao F, Xiao Z, et al. MicroRNAs and metastasis: Small RNAs play big roles. Cancer Metastasis Rev. 2018;37(1):5–15. doi: 10.1007/s10555-017-9712-y
- Kim YK, Kim B, Kim VN. Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis. Proc Natl Acad Sci USA. 2016;113(13): E1881–Е1889. doi: 10.1073/pnas.1602532113
- Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–716. doi: 10.1038/nrd1470
- Ko J-H, Nam D, Um J-Y, et al. Bergamottin Suppresses Metastasis of Lung Cancer Cells through Abrogation of Diverse Oncogenic Signaling Cascades and Epithelial-to-Mesenchymal Transition. Моlecules. 2018;23(7):1601. doi: 10.3390/молекулы 23071601
- Kong W, Yang H, He L, et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 2008;28(22):6773–6784. doi: 10.1128/MCB.00941-08
- Kotha NV, Cherry DR, Bryant AK, et al. Prognostic utility of pretreatment neutrophil-lymphocyte ratio in survival outcomes in localized non-small cell lung cancer patients treated with stereotactic body radiotherapy: Selection of an ideal clinical cutoff point. Clin Transl Radiat Oncol. 2021;28:133–140. doi: 10.1016/j.ctro.2021.03.010
- Kulis M, Esteller M. 2-DNA Methylation and Cancer. Advances and Genetics. 2010;70:27–56. doi: 10.1016/B978-0-12-380866-0.60002-2
- Kumaraswamy E, Wendt KL, Augustine LA, et al. BRCA1 regulation of epidermal growth factor receptor (EGFR) expression in human breast cancer cells involves microRNA-146a and is critical for its tumor suppressor function. Oncogene. 2014;34(33):4333–4346. doi: 10.1038/onc.2014.363
- Kumarswamy R, Mudduluru G, Ceppi P, et al. MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer. Int J Cancer. 2012;130(9):2044–2053. doi: 10.1002/ijc.26218
- Labbaye C, Spinello I, Quaranta MT, et al. A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol. 2008;10(7):788–800. doi: 10.1038/ncb1741
- Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of Tissue-Specific MicroRNAs from Mouse. Curr Biol. 2002;12(9):735–739. doi: 10.1016/S0960-9822(02)00809-6
- Lamar JM, Xiao Y, Norton E, et al. SRC-tyrosine kinase activates the YAP/TAZ axis and thereby drives tumor growth and metastasis. J Biol Chem. 2019;294(7):2302–2317. doi: 10.1074/jbc.RA118.004364
- Lambert KA, Roff AN, Panganiban RP, et al. MicroRNA-146a is induced by inflammatory stimuli in airway epithelial cells and augments the anti-inflammatory effects of glucocorticoids. PLoS ONE. 2018;13(10):e0205434. doi: 10.1371/journal.pone.0205434
- Landi MT, Zhao Y, Rotunno M, et al. MicroRNA Expression Differentiates Histology and Predicts Survival of Lung Cancer. Clin Cancer Res. 2010;16(2):430–441. doi: 10.1158/1078-0432.CCR-09-1736
- Larner-Svensson HM, Williams AE, Tsitsiou E, et al. Pharmacological studies of the mechanism and function of interleukin-1β-induced miRNA-146a expression in primary human airway smooth muscle. Respir Res. 2010;11(1):1–13. doi: 10.1186/1465-9921-11-68
- Lebanony D, Benjamin H, Gilad S, et al. Diagnostic Assay Based on hsa-miR-205 Expression Distinguishes Squamous From Nonsquamous Non-Small-Cell Lung Carcinoma. J Clin Oncol. 2009;27(12):2030–2037. doi: 10.1200/JCO.2008.19.4134
- Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854. doi: 10.1016/0092-8674(93)90529-Y
- Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–419. doi: 10.1038/nature01957
- Li B, Ren S, Li X, et al. MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer. Lung Cancer. 2014;83(2):146–153. doi: 10.1016/j.lungcan.2013.11.003
- Li J, Zhang J, Xie F, et al. Macrophage migration inhibitory factor promotes Warburg effect via activation of the NF-κB/HIF-1α pathway in lung cancer. Int J Mol Med. 2017;41(2):1062–1068. doi: 10.3892/ijmm.2017.3277
- Li M-W, Gao L, Dang Y-W, et al. Protective potential of miR-146a-5p and its underlying molecular mechanism in diverse cancers: A comprehensive meta-analysis and bioinformatics analysis. Cancer Cell Int. 2019;19:1–21. doi: 10.1186/s12935-019-0886-y
- Li Y-L, Wang J, Zhang C-Y, et al. MiR-146a-5p inhibits cell proliferation and cell cycle progression in NSCLC cell lines by targeting CCND1 and CCND2. Oncotarget. 2016;7(37):59287–59298. doi: 10.18632/oncotarget.11040
- Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol. 2005;7(7):719–723. doi: 10.1038/ncb1274
- Liu L, Wan C, Zhang W, et al. MiR-146a regulates PM1-induced inflammation via NF-kappaB signaling pathway in BEAS-2B cells. Environ Toxicol. 2018;33(7):743–751. doi: 10.1002/tox.22561
- Liu R, Liu C, Chen D, et al. FOXP3 Controls an miR-146/NF-κB Negative Feedback Loop That Inhibits Apoptosis in Breast Cancer Cells. Cancer Res. 2015;75(8):1703–1713. doi: 10.1158/0008-5472.CAN-14-2108
- Lorenz DA, Garner AL. Approaches for the Discovery of Small Molecule Ligands Targeting microRNAs. In: Bernstein PR, Garner AL, Georg GI, et al. editors. Topics in Medicinal Chemistry. USA, New York: Springer International Publishing, 2017. P. 79–110. doi: 10.1007/7355_2017_3
- Madhavan D, Cuk K, Burwinkel B, Yang R. Cancer diagnosis and prognosis decoded by blood-based circulating microRNA signatures. Front Genet. 2013;4:116. doi: 10.3389/fgene.2013.00116
- Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–715. doi: 10.1016/j.cell.2008.03.027
- McClure JJ, Li X, Chou CJ. Advances and Challenges of HDAC Inhibitors in Cancer Therapeutics. Adv Cancer Res. 2018;138: 183–211. doi: 10.1016/bs.acr.2018.02.006
- Mehta M, Tewari D, Gupta G, et al. Oligonucleotide therapy: An emerging focus area for drug delivery in chronic inflammatory respiratory diseases. Chem Biol Interact. 2019;308:206–215. doi: 10.1016/j.cbi.2019.05.028
- Mohamed RH, Pasha HF, Gad DM, Toam MM. miR-146a and miR-196a-2 genes polymorphisms and its circulating levels in lung cancer patients. J Biochem. 2019;166(4):323–329. doi: 10.1093/jb/mvz044
- Molina JR, Yang P, Cassivi SD, et al. Non-Small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and Survivorship. Mayo Clin Proc. 2008;83(5):584–594. doi: 10.1016/S0025-6196(11)60735-0
- Mongroo PS, Rustgi AK. The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther. 2010;10(3): 219–222. doi: 10.4161/cbt.10.3.12548
- Oft M, Peli J, Rudaz C, et al. TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev. 1996;10(19):2462–2477. doi: 10.1101/gad.10.19.2462
- Opalinska JB, Bersenev A, Zhang Z, et al. MicroRNA expression in maturing megakaryocytes. Blood. 2010;116(23): e128–e138. doi: 10.1182/blood-2010-06-292920
- Pang L, Lu J, Huang J, et al. Upregulation of miR-146a increases cisplatin sensitivity of the non-small cell lung cancer A549 cell line by targeting JNK-2. Oncol Lett. 2017;14(6):7745–7752. doi: 10.3892/ol.2017.7242
- Park DH, Jeon HS, Lee SY, et al. MicroRNA-146a inhibits epithelial mesenchymal transition in non-small cell lung cancer by targeting insulin receptor substrate 2. Int J Oncol. 2015;47(4):1545–1553. doi: 10.3892/ijo.2015.3111
- Pavel AB, Campbell JD, Liu G, et al. Alterations in Bronchial Airway miRNA Expression for Lung Cancer Detection. Cancer Prev Res. 2017;10(11):651–659. doi: 10.1158/1940-6207.CAPR-17-0098
- Pérez-García EI, Meza-Sosa KF, López-Sevilla Y, et al. Merlin negative regulation by miR-146a promotes cell transformation. Biochem Biophys Res Commun. 2015;468(4):594–600. doi: 10.1016/j.bbrc.2015.10.156
- Perry MM, Moschos SA, Williams AE, et al. Rapid Changes in MicroRNA-146a Expression Negatively Regulate the IL-1β-Induced Inflammatory Response in Human Lung Alveolar Epithelial Cells. J Immunol. 2008;180(8):5689–5698. doi: 10.4049/jimmunol.180.8.5689
- Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: Approaches and considerations. Nat Rev Genet. 2012;13(5):358–369. doi: 10.1038/nrg3198
- Ren Y-G, Zhou X-M, Cui Z-G, Hou G. Effects of common polymorphisms in miR-146a and miR-196a2 on lung cancer susceptibility: A meta-analysis. J Thorac Dis. 2016;8(6):1297–1305. doi: 10.21037/jtd.2016.05.02
- Richardson CM, Sharma RA, Cox G, O’Byrne KJ. Epidermal growth factor receptors and cyclooxygenase-2 in the pathogenesis of non-small cell lung cancer: Potential targets for chemoprevention and systemic therapy. Lung Cancer. 2003;39(1):1–13. doi: 10.1016/S0169-5002(02)00382-3
- Rieber M, Strasberg Rieber M. DN-R175H p53 mutation is more effective than p53 interference in inducing epithelial disorganization and activation of proliferation signals in human carcinoma cells: role of E-cadherin. Int J Cancer. 2009;125(7):1604–1612. doi: 10.1002/ijc.24512
- Rosenfeld N, Aharonov R, Meiri E, et al. MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol. 2008;26:462–469. doi: 10.1038/nbt1392
- Ryasen GW, Starczynowski DT. Deregulation of microRNA in myelodysplastic syndrome. Leukemia. 2012;26(1):13–22. doi: 10.1038/leu.2011.221
- Qiu H, Xie Z, Tang W, et al. Association between microRNA-146a, -499a and -196a-2 SNPs and non-small cell lung cancer: a case-control study involving 2249 subjects. Biosci Rep. 2021;41(2): BSR20201158. doi: 10.1042/BSR20201158
- Qi P, Li Y, Liu X, et al. Cryptotanshinone Suppresses Non-Small Cell Lung Cancer via microRNA-146a-5p/EGFR Axis. Int J Biol Sci. 2019;15(5):1072–1079. doi: 10.7150/ijbs.31277
- Qu J, Chen X, Sun Y-Z, et al. In Silico Prediction of Small Molecule-miRNA Associations Based on the HeteSim Algorithm. Mol Ther Nucleic Acids. 2019;14:274–286. doi: 10.1016/j.omtn.2018.12.002
- Saba R, Sorensen DL, Booth SA. MicroRNA-146a: A Dominant, Negative Regulator of the Innate Immune Response. Front Immunol. 2014;5:578. doi: 10.3389/fimmu.2014.00578
- Said NA, Williams ED. Growth factors in induction of epithelial-mesenchymal transition and metastasis. Cells Tissues Organs. 2011;193(1–2):85–97. doi: 10.1159/000320360
- Saito RA, Watabe T, Horiguchi K, et al. Thyroid transcription factor-1 inhibits transforming growth factor-beta-mediated epithelial-to-mesenchymal transition in lung adenocarcinoma cells. Cancer Res. 2009;69(7):2783–2791. doi: 10.1158/0008-5472.CAN-08-3490
- Sanchez NC, Medrano-Jimenez E, Aguilar-Leon D, et al. Tumor Necrosis Factor-Induced miR-146a Upregulation Promotes Human Lung Adenocarcinoma Metastasis by Targeting Merlin. DNA Cell Biol. 2020;39(3):484–497. doi: 10.1089/dna.2019.4620
- Samec M, Liskova A, Koklesova L, et al. Flavonoids against the Warburg phenotype – Concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA J. 2020;11(3):377–398. doi: 10.1007/s13167-020-00217-y
- Sato M, Shames DS, Hasagawa Y. Emerging evidence of epithelial-to-mesenchymal transition in lung cancinogenesis. Respirology. 2012;17(7):1048–1059. doi: 10.1111/j.1440-1843.2012.02173.x
- Shahriar A, Ghaleh-Aziz Shiva G, Ghader B, et al. The dual role of miR-146a in metastasis and disease progression. Biomed Pharm. 2020;126:110099. doi: 10.1016/j.biopha.2020.110099
- Saunders NA, Simpson F, Thompson EW, et al. Role of intratumoural heterogeneity in cancer drug resistance: Molecular and clinical perspectives. Embo Mol Med. 2012;4(8):675–684. doi: 10.1002/emmm.201101131
- Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–181. doi: 10.1038/nrc2088
- Shi L, Xu Z, Wu G, et al. Up-regulation of miR-146a increases the sensitivity of non-small cell lung cancer to DDP by downregulating cyclin J. BMC Cancer. 2017;17(1):1–14. doi: 10.1186/s12885-017-3132-9
- Shen K-H, Hung J-H, Chang C-W, et al. Solasodine inhibits invasion of human lung cancer cell through downregulation of miR-21 and MMPs expression. Chem Biol Interact. 2017;268:129–135. doi: 10.1016/j.cbi.2017.03.005
- Singh A, Settleman J. EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene. 2010;29(34):4741–4751. doi: 10.1038/onc.2010.215
- Sodhi KK, Bahl C, Singh N, et al. Functional genetic variants in pre-miR-146a and 196a2 genes are associated with risk of lung cancer in North Indians. Future Oncol. 2015;11(15):2159–2173. doi: 10.2217/fon.15.143
- Stahlhut C, Slack FJ. Combinatorial Action of MicroRNAs let-7 and miR-34 Effectively Synergizes with Erlotinib to Suppress Non-small Cell Lung Cancer Cell Proliferation. Cell Cycle. 2015;14(13):2171–2180. doi: 10.1080/15384101.2014.1003008
- Starczynowski DT, Kuchenbauer F, Wegrzyn J, et al. MicroRNA-146a disrupts hematopoietic differentiation and survival. Exp Hematol. 2011;39(2):167–178. doi: 10.1016/j.exphem.2010.09.011
- Starczynowski DT, Kukenbauer F, Arigiropoulos B, et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nature Med. 2010;16(1):49–58. doi: 10.1038/nm.2054
- Stenvang J, Petri A, Lindow M, et al. Inhibition of microRNA function by antimiR oligonucleotides. Silence. 2012;3(1):1–17. doi: 10.1186/1758-907X-3-1
- Stuckrath I, Rack B, Janni W, et al. Aberrant plasma levels of circulating miR-16, miR-107, miR-130a and miR-146a are associated with lymph node metastasis and receptor status of breast cancer patients. Oncotarget. 2015;6(15):13387–13401. doi: 10.18632/oncotarget.3874
- Sun M, Fang S, Li W, et al. Associations of miR-146a and miR-146b expression and clinical characteristics in papillary thyroid carcinoma. Cancer Biomark. 2015;15(1):33–40. doi: 10.3233/CBM-140431
- Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 2006;103(33):12481–12486. doi: 10.1073/pnas.0605298103
- Tan W, Liao Y, Qiu Y, et al. miRNA 146a promotes chemotherapy resistance in lung cancer cells by targeting DNA damage inducible transcript 3 (CHOP). Cancer Lett. 2018;428:55–68. doi: 10.1016/j.canlet.2018.04.028
- Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 2019;20:5–20. doi: 10.1038/s41580-018-0059-1
- Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–7233. doi: 10.1093/nar/gkr254
- Vang S, Wu HT, Fischer A, et al. Identification of ovarian cancer metastatic miRNAs. PLoS ONE. 2013;8(3):e58226. doi: 10.1371/journal.pone.0058226
- Velagapudi SP, Vummidi BR, Disney MD. Small molecule chemical probes of microRNA function. Curr Opin Chem Biol. 2015;24:97–103. doi: 10.1016/j.cbpa.2014.10.024
- Viswanathan SR, Daley GQ. Lin28: A MicroRNA Regulator with a Macro Role. Cell. 2010;140(4):445–449. doi: 10.1016/j.cell.2010.02.007
- Wani JA, Majid SM, Khan A, et al. Clinico-Pathological Importance of miR-146a in Lung Cancer. Diagnostics (Basel). 2021;11(2):274. doi: 10.3390/diagnostics11020274
- Wang C-C, Chen X, Qu J, et al. RFSMMA: A New Computational Model to Identify and Prioritize Potential Small Molecule–MiRNA Associations. J Chem Inf Model. 2019;59(4):1668–1679. doi: 10.1021/acs.jcim.9b00129
- Wang RJ, Zheng YH, Wang P, Zhang JZ. Serum miR-125a-5p, miR-145 and miR-146a as diagnostic biomarkers in non-small cell lung cancer. Int J Clin Exp Pathol. 2015;8(1):765–771.eCollection 2015.
- Wang X, Gao H, Ren L, et al. Demethylation of the miR-146a promoter by 5-Aza-2'-deoxycytidine correlates with delayed progression of castration-resistant prostate cancer. BMC Cancer. 2014;14:1–11. doi: 10.1186/1471-2407-14-308
- Wang W-M, Liu J-C. Effect and molecular mechanism of mir-146a on proliferation of lung cancer cells by targeting and regulating MIF gene. Asian Pac J Trop Med. 2016;9(8):806–811. doi: 10.1016/j.apjtm.2016.06.001
- Watashi K, Yeung ML, Starost MF, et al. Identification of Small Molecules That Suppress MicroRNA Function and Reverse Tumorigenesis. J Biol Chem. 2010;285(32):24707–24716. doi: 10.1074/jbc.M109.062976
- Wei Y, Zou Z, Becker N, et al. EGFR-Mediated Beclin 1 Phosphorylation in Autophagy Suppression, Tumor Progression, and Tumor Chemoresistance. Cell. 2013;154(6):1269–1284. doi: 10.1016/j.cell.2013.08.015
- Wiggins JF, Ruffino L, Kelnar K, et al. Development of a Lung Cancer Therapeutic Based on the Tumor Suppressor microRNA-34. Cancer Res. 2010;70(14):5923–5930. doi: 10.1158/0008-5472.CAN-10-0655
- Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer. 1997;80(8):1529–1537. doi: 10.1002/(sici)1097–0142(19971015)80:8+<1529:: aid-cncr2>3.3.co;2-#
- Wu C, Cao Y, He Z, et al. Serum Levels of miR-19b and miR-146a as Prognostic Biomarkers for Non-Small Cell Lung Cancer. Tohoku J Exp Med. 2014;232(2):85–95. doi: 10.1620/tjem.232.85
- Wu K, He J, Pu W, Peng Y. The Role of Exportin-5 in microRNA Biogenesis and Cancer. Genomics Proteomics Bioinformatics. 2018;16(2):120–126. doi: 10.1016/j.gpb.2017.09.004
- Xiao W, Zhong Y, Wu L, et al. Prognostic value of microRNAs in lung cancer: A systematic review and meta-analysis. Mol Clin Oncol. 2018;10(1):67–77. doi: 10.3892/mco.2018.1763
- Yang H, Sun B, Xu K, et al. Pharmaco-transcriptomic correlation analysis reveals novel responsive signatures to HDAC inhibitors and identifies Dasatinib as a synergistic interactor in small-cell lung cancer. EBioМеdicine. 2021;69:103457. doi: 10.1016/j.ebiom.2021.103457
- Yin J, Zhao J, Hu W, et al. Disturbance of the let-7/LIN28 double-negative feedback loop is associated with radio- and chemo-resistance in non-small cell lung cancer. PLoS ONE. 2017;12(2): e0172787. doi: 10.1371/journal.pone.0172787
- Yoon K-A, Yoon H, Park S, et al. The prognostic impact of microRNA sequence polymorphisms on the recurrence of patients with completely resected non-small cell lung cancer. J Thorac Cardiovasc Surg. 2012;144(4):794–807. doi: 10.1016/j.jtcvs.2012.06.030
- Yuwen DL, Sheng BB, Liu J, et al. MiR-146a-5p level in serum exosomes predicts therapeutic effect of cisplatin in non-small cell lung cancer. Eur Rev Med Pharm Sci. 2017;21(11):2650–2658.
- Zaman MS, Chen Y, Deng G, et al. The functional significance of microRNA-145 in prostate cancer. Br J Cancer. 2010;103(2):256–264. doi: 10.1038/sj.bjc.6605742
- Zhang Y, Du H, Li Y, et al. Elevated TRIM23 expression predicts cisplatin resistance in lung adenocarcinoma. Cancer Sci. 2020;111(2):637–646. doi: 10.1111/cas.14226
- Zhang Z, Zhang Y, Sun XX, et al. microRNA-146a inhibits cancer metastasis by downregulating VEGF through dual pathways in hepatocellular carcinoma. Mol Cancer. 2015;14:1–15. doi: 10.1186/1476-4598-14-5
- Zhao JL, Rao DS, Boldin MP, et al. NF-κB dysregulation in microRNAa-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci USA. 2011;108(22):9184–9189. doi: 10.1073/pnas.1105398108
- Zheng D, Haddadin S, Wang Y, et al. Plasma microRNAs as novel biomarkers for early detection of lung cancer. Int J Clin Exp Pathol. 2011;4(6):575–586.
- Zeng Y, Yi R, Cullen BR. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. Embo J. 2004;24(1):138–148. doi: 10.1038/sj.emboj.7600491
- Zhong H, Lu J, Jing S, et al. Low-dose rituximab lowers serum Exosomal miR-150-5p in AChR-positive refractory myasthenia gravis patients. J Neuroimmunol. 2020;348:577383. doi: 10.1016/j.jneuroim.2020.577383
- Zhong M, Ma X, Sun C, Chen L. MicroRNAs reduce tumor growth and contribute to enhance cytotoxicity induced by gefitinib in non-small cell lung cancer. Chem Biol Interact. 2010;184(3):431–438. doi: 10.1016/j.cbi.2010.01.025
- Zhou Y-X, Zhao W, Mao L-W, et al. Long non-coding RNA NIFK-AS1 inhibits M2 polarization of macrophages in endometrial cancer through targeting miR-146a. Int J Biochem Cell Biol. 2018;104:25–33. doi: 10.1016/j.biocel.2018.08.017
- Zhu X, Li Y, Xie C, et al. miR-145 sensitizes ovarian cancer cells to paclitaxel by targeting Sp1 and Cdk6. Int J Cancer. 2014;135(6):1286–1296. doi: 10.1002/ijc.28774
- Zucker S, Hymowitz M, Rollo EE, et al. Tumorigenic Potential of Extracellular Matrix Metalloproteinase Inducer. Am J Pathol. 2001;158(6):1921–1928. doi: 10.1016/S0002-9440(10)64660-3
