Molecular mechanisms of transport of substances across the blood-brain barrie as targets for pharmacological action. Part 2. Modern methods of delivery of pharmacological agents to the central nervous system

封面

如何引用文章

全文:

详细

One of the unresolved problems on the way to improving the pharmacotherapy of CNS diseases is the development and creation of technologies that allow drugs to cross the blood-brain barrier (BBB). The review discusses modern methods of drug delivery to the CNS. The advantages and disadvantages of the main pharmacological strategies for directly overcoming the BBB and an alternative to this are shown. New methods of drug delivery to the brain with damage (physical, chemical, etc.) and without disruption of the blood-brain barrier structure (small molecules, cell-mediated transport, stem cells) are considered. The prospects for the use of artificial nanosized drug transporters are discussed. An alternative strategy of pharmacological action on the CNS structures (intranasal route) is shown to be promising. Possible mechanisms of action of pharmacological agents on CNS structures bypassing the BBB are considered.

作者简介

Maria Litvinova

Saint Petersburg Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation; Institute of Experimental Medicine

编辑信件的主要联系方式.
Email: litvinova-masha@bk.ru

Ph.D. Student at the S.V. Anichkov Department of Neuropharmacology, Laboratory Assistant at the Department of Physiology and Pathology

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Alexander Trofimov

Saint Petersburg Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation; Institute of Experimental Medicine

Email: alexander.n.trofimov@gmail.com

Ph.D. of Biological Sciences, Senior Researcher at the I.P. Pavlov Department of Physiology, Associate Professor at the Department of Physiology and Pathology

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Petr Shabanov

Institute of Experimental Medicine

Email: pdshabanov@mail.ru

Dr. of Med. Sci. (Pharmacology), Professor and Head, S. V. Anichkov Dept. of Neuropharmacology

俄罗斯联邦, Saint Petersburg

Andrei Lebedev

Institute of Experimental Medicine

Email: aalebedev-iem@rambler.ru
ORCID iD: 0000-0003-0297-0425
SPIN 代码: 4998-5204

Dr. Biol. Sci. (Pharmacol-ogy), Professor, Leading Researcher, S. V. Anichkov Dept. of Neuropharmacology

俄罗斯联邦, Saint Petersburg

Evgeny Bychkov

Institute of Experimental Medicine

Email: bychkov@mail.ru
ORCID iD: 0000-0002-8911-6805
SPIN 代码: 9408-0799

PhD (Biochemistry), Senior Re-searcher, S. V. Anichkov Dept. of Neuropharmacology

俄罗斯联邦, Saint Petersburg

Nikolay Arseniev

Saint Petersburg Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation

Email: nikolay.arseniev@pharminnotech.com
SPIN 代码: 9038-7623

Ph.D, Biology, docent, docent of the Department to Physiology and Pathology

俄罗斯联邦, Saint Petersburg

Alexander Tyukavin

Saint Petersburg Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation

Email: alexander.tukavin@pharminnotech.com
SPIN 代码: 8476-5366

Dr. of Medicine (MD), Professor, Head of the Department to Physiology and Pathology

俄罗斯联邦, Saint Petersburg

参考

  1. Terstappen G. C., Meyer A. H., Bell R. D., Zhang W. Strategies for delivering therapeutics across the blood-brain barrier. Nat Rev Drug Discov. 2021 May;20 (5):362-383. doi: 10.1038/s41573-021-00139-y. Epub 2021 Mar 1. PMID: 33649582.
  2. Gandhi K., Barzegar-Fallah A., Banstola A., Rizwan S. B., Reynolds J. N. J. Ultrasound-Mediated Blood-Brain Barrier Disruption for Drug Delivery: A Systematic Review of Protocols, Efficacy, and Safety Outcomes from Preclinical and Clinical Studies. Pharmaceutics. 2022 Apr 11;14(4):833. doi: 10.3390/pharmaceutics14040833. PMID: 35456667; PMCID: PMC9029131.
  3. Frim D. M., Uhler T. A., Galpern W. R., Beal M. F., Breakefield X. O., Isacson O. Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat. Proc. Natl. Acad. Sci. USA. 1994;91:5104–5108. doi: 10.1073/pnas.91.11.5104.
  4. Pardridge W. M. The Blood-Brain Barrier: Bottleneck in Brain Drug Development. NeuroRx. 2005;2:3–14. doi: 10.1602/neurorx.2.1.3. [PMC free article] [PubMed] [CrossRef] [Google Scholar] [Ref list]
  5. Aryal M., Arvanitis C. D., Alexander P. M., McDannold N. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system. Adv. Drug Deliv. Rev. 2014;72:94–109. doi: 10.1016/j.addr.2014.01.008.
  6. Abrahao A., Meng Y., Llinas M., Huang Y., Hamani C., Mainprize T., Aubert I., Heyn C., Black S. E., Hynynen K., et al. First-in-human trial of blood-brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nat. Commun. 2019;10:4373. doi: 10.1038/s41467-019-12426-9.
  7. Goldwirt L., Canney M., Horodyckid C., Poupon J., Mourah S., Vignot A., Chapelon J. Y., Carpentier A. Enhanced brain distribution of carboplatin in a primate model after blood-brain barrier disruption using an implantable ultrasound device. Cancer Chemother. Pharmacol. 2016;77: 211–216. doi: 10.1007/s00280-015-2930-5.
  8. Lipsman N., Meng Y., Bethune A. J., Huang Y., Lam B., Masellis M., Herrmann N., Heyn C., Aubert I., Boutet A., et al. Blood-brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat. Commun. 2018;9:2336. doi: 10.1038/s41467-018-04529-6.
  9. Mainprize T., Lipsman N., Huang Y., Meng Y., Bethune A., Ironside S., Heyn C., Alkins R., Trudeau M., Sahgal A., et al. Blood-Brain Barrier Opening in Primary Brain Tumors with Non-invasive MR-Guided Focused Ultrasound: A Clinical Safety and Feasibility Study. Sci. Rep. 2019;9:321. doi: 10.1038/s41598-018-36340-0.
  10. Dauba A., Delalande A., Kamimura H. A. S., Conti A., Larrat B., Tsapis N., Novell A. Recent Advances on Ultrasound Contrast Agents for Blood-Brain Barrier Opening with Focused Ultrasound. Pharmaceutics. 2020 Nov 21;12(11):1125. doi: 10.3390/pharmaceutics12111125. PMID: 33233374; PMCID: PMC7700476.
  11. Kovacs Z. I., Kim S., Jikaria N., Qureshi F., Milo B., Lewis B. K., Bresler M., Burks S. R., Frank J. A. Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proc. Natl. Acad. Sci. USA. 2017;114:E75–E84. doi: 10.1073/pnas.1614777114.
  12. Tsai H. C., Tsai C. H., Chen W. S., Inserra C., Wei K. C., Liu H. L. Safety evaluation of frequent application of microbubble-enhanced focused ultrasound blood-brain-barrier opening. Sci. Rep. 2018; 8:17720. doi: 10.1038/s41598-018-35677-w.
  13. Morad G., Carman C. V., Hagedorn E. J., Perlin J. R., Zon L. I.., Mustafaoglu N., Park T. E., Ingber D. E., Daisy C. C., Moses M. A. Tumor-Derived Extracellular Vesicles Breach the Intact Blood-Brain Barrier via Transcytosis. ACS Nano. 2019 Dec 24;13(12):13853-13865. doi: 10.1021/acsnano.9b04397. Epub 2019 Sep 10. PMID: 31479239; PMCID: PMC7169949.
  14. Pathology / A. I. Tyukavin, A. G. Vasiliev, T. D. Vlasov [and others]. - Moscow: Limited Liability Company “Scientific Publishing Center INFRA-M”, 2020. – 844 p. – (Higher education: Specialist). – ISBN 978-5-16-016260-7. – doi: 10.12737/1090595.
  15. Whelan R., Hargaden G. C., Knox A. J. S. Modulating the Blood-Brain Barrier: A Comprehensive Review. Pharmaceutics. 2021 Nov 22;13(11):1980. doi: 10.3390/pharmaceutics13111980. PMID: 34834395; PMCID: PMC8618722.
  16. Haney M. J., Zhao Y., Harrison E. B., Mahajan V., Ahmed S., He Z., Suresh P., Hingtgen S. D., Klyachko N. L., Mosley R. L., Gendelman H. E., Kabanov A. V., Batrakova E. V. Specific transfection of inflamed brain by macrophages: a new therapeutic strategy for neurodegenerative diseases. PLoS One. 2013 Apr 19;8(4):e61852. doi: 10.1371/journal.pone.0061852. PMID: 23620794; PMCID: PMC3631190.
  17. Patil S. M., Sawant S. S., Kunda N. K. Exosomes as drug delivery systems: A brief overview and progress update. Eur J Pharm Biopharm. 2020 Sep;154: 259-269. doi: 10.1016/j.ejpb.2020.07.026. Epub 2020 Jul 25. PMID: 32717385.
  18. Lo Furno D., Mannino G., Giuffrida R. Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. Journal of Cellular Physiology. 2018;233(5):3982–3999. doi: 10.1002/jcp.26192.; Salem N. A. Mesenchymal stem cell based therapy for Parkinson’s disease. International Journal of Stem Cell Research & Therapy. 2019;6(1):p. 62. doi: 10.23937/2469-570x/1410062
  19. Chia Y. C., Anjum C. E., Yee H. R., Kenisi Y., Chan M. K. S., Wong M. B. F., Pan S. Y. Stem Cell Therapy for Neurodegenerative Diseases: How Do Stem Cells Bypass the Blood-Brain Barrier and Home to the Brain? Stem Cells Int. 2020 Sep 4;2020:8889061. doi: 10.1155/2020/8889061. PMID: 32952573; PMCID: PMC7487096
  20. Soper B. W., Duffy T. M., Lessard M. D., Jude C. D., Schuldt A. J., Vogler C. A., Levy B., Barker J. E. Transplanted ER-MP12hi20-58med/hi myeloid progenitors produce resident macrophages from marrow that are therapeutic for lysosomal storage disease. Blood Cells Mol Dis. 2004 Jan-Feb;32(1):199-213. doi: 10.1016/j.bcmd.2003.09.003. PMID: 14757436.
  21. Bulbake U., Doppalapudi S., Kommineni N., Khan W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics. 2017;9:12. doi: 10.3390/pharmaceutics9020012.
  22. Yetisgin A. A., Cetinel S., Zuvin M., Kosar A., Kutlu O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules. 2020;25:2193. doi: 10.3390/molecules25092193.
  23. Teleanu R. I., Preda M. D., Niculescu A. G., Vladâcenco O., Radu C. I., Grumezescu A. M., Teleanu D. M. Current Strategies to Enhance Delivery of Drugs across the Blood-Brain Barrier. Pharmaceutics. 2022 May 4;14(5):987. doi: 10.3390/pharmaceutics14050987. PMID: 35631573; PMCID: PMC9145636.
  24. Loyse A., Thangaraj H., Easterbrook P., Ford N., Roy M., Chiller T., Govender N., Harrison T. S., Bicanic T. Cryptococcal meningitis: Improving access to essential antifungal medicines in resource-poor countries. Lancet Infect. Dis. 2013;13:629–637. doi: 10.1016/S1473-3099(13)70078-1.
  25. Yetisgin A. A., Cetinel S., Zuvin M., Kosar A., Kutlu O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules. 2020; 25:2193. doi: 10.3390/molecules25092193.
  26. Hersh A. M., Alomari S., Tyler B. M. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int J Mol Sci. 2022 Apr 9;23(8):4153. doi: 10.3390/ijms23084153. PMID: 35456971; PMCID: PMC9032478
  27. Mitchell M. J., Billingsley M. M., Haley R. M., Wechsler M. E., Peppas N. A., Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021;20:101–124. doi: 10.1038/s41573-020-0090-8.
  28. Thorne R. G., Pronk G. J., Padmanabhan V., Frey W. H. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127: 481–496. doi: 10.1016/j.neuroscience.2004.05.029.
  29. Mitusova K., Peltek O. O., Karpov T. E., Muslimov A. R., Zyuzin M. V., Timin A. S.. Overcoming the blood-brain barrier for the therapy of malignant brain tumor: current status and prospects of drug delivery approaches. J Nanobiotechnology. 2022 Sep 15;20(1):412. doi: 10.1186/s12951-022-01610-7. PMID: 36109754; PMCID: PMC9479308.
  30. Lochhead J. J., Wolak D. J., Pizzo M. E., Thorne R. G. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab. 2015 Mar;35(3):371-81. doi: 10.1038/jcbfm.2014.215. Epub 2014 Dec 10. PMID: 25492117; PMCID: PMC4348383.
  31. Lochhead J. J., Thorne R. G. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012 May 15;64(7):614-28. doi: 10.1016/j.addr.2011.11.002. Epub 2011 Nov 15. PMID: 22119441.
  32. Knox E. G., Aburto M. R., Clarke G., Cryan J. F., O’Driscoll C. M. The blood-brain barrier in aging and neurodegeneration. Mol Psychiatry. 2022 Jun;27(6): 2659-2673. doi: 10.1038/s41380-022-01511-z. Epub 2022 Mar 31. PMID: 35361905; PMCID: PMC9156404.
  33. National Center for Biotechnology Information PubChem Patent Summary for WO9107947-A1. [(accessed on 16 April 2022)]; Available online: https://pubchem.ncbi.nlm.nih.gov/patent/WO-9107947-A1. Дата обращения: ноябрь 2022 30.
  34. Costa C. P., Moreira J. N., Sousa Lobo J. M., & Silva A. C. (2021). Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies. Acta pharmaceutica Sinica. B, 11(4), 925–940. https://doi.org/10.1016/j.apsb.2021.02.012
  35. Rompicherla S. K. L., Arumugam K., Bojja S. L., Kumar N., Rao C. M. Pharmacokinetic and pharmacodynamic evaluation of nasal liposome and nanoparticle based rivastigmine formulations in acute and chronic models of Alzheimer’s disease. NaunynSchmiedeberg’s Arch. Pharmacol. 2021;394:1737–1755. doi: 10.1007/s00210-021- 02096-0.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Methods of drug delivery through the blood-brain barrier

下载 (167KB)
3. Fig. 2. Mechanism of modulation of the blood-brain barrier by focused ultrasound. Schematic representation of several mechanisms of BBB destruction: stable cavitation causes the mechanism of pushing (a) and pulling (b) microflows (c), which can safely cross the blood-brain barrier. Inertial cavitation causes microjet (d) fragmentation (e) and shock wave (e), which can increase the risk of damage to the BBB [10]

下载 (252KB)
4. Fig. 3. Intercellular interactions through extravesicles [14]

下载 (530KB)
5. Fig. 4. Stem cells during fetal development

下载 (286KB)
6. Fig. 5. Promising transport mechanisms of liposomes to overcome the BBB

下载 (244KB)
7. Fig. 6. Extracellular mechanism of drug delivery during intranasal administration

下载 (71KB)
8. Fig. 7. Intracellular mechanism of substance delivery during intranasal administration

下载 (41KB)

版权所有 © Eco-Vector, 2022

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


##common.cookie##