Supergroups of eukaryotes through a biotechnologist’s look. The system of eukaryotes and the need for a taxonomic/biotechnological interface

封面

如何引用文章

全文:

详细

Eukaryotes represent a group of rich biotechnological potential, and its classification having high heuristic power and great predictive capabilities is needed by the biotechnological community. The requirements for biological classification by applied sciences can be reduced to 1) the stability of the classification system and 2) its adequacy to the nature relationships. The present paper provides a retrospective review of eukaryotic megataxonomy, assesses the stability of current system, and outlines approaches to building an interface that ensures a crosstalk of taxonomic and biotechnological communities.

作者简介

Ivan Zmitrovich

Komarov Botanical Institute of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: iv_zmitrovich@mail.ru
ORCID iD: 0000-0002-3927-2527
SPIN 代码: 4155-3190
Scopus 作者 ID: 56521442400
Researcher ID: I-1523-2013
https://binran.ru/sotrudniki/4926/

D.Sc. in Biology, Leading Researcher, Laboratory of Systematics and Geography of the Fungi

俄罗斯联邦, St. Petersburg

Vladimir Perelygin

Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation

Email: vladimir.pereligin@pharminnotech.com
ORCID iD: 0000-0002-0999-5644
SPIN 代码: 3128-7451
Scopus 作者 ID: 13105602000
Researcher ID: AAV-6556-2020

Doctor of Medicine (MD), Professor, Head of the Industrial Ecology Department

俄罗斯联邦, Saint Petersburg

Mikhail Zharikov

Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation

Email: zharikov.mihail@pharminnotech.com
ORCID iD: 0000-0003-0720-501X
SPIN 代码: 7818-7228
Researcher ID: AAS-9156-2021

Master Student

俄罗斯联邦, Saint Petersburg

参考

  1. Sweetlove L. Number of species on Earth tagged at 8.7 million. Nature. 2011. https://doi.org/10.1038/news.2011.498
  2. Starobogatov Ya. I. Natural system and artificial systems (goal and principles of taxonomy). Vestnik zoologii=Zoodiversity. 1989;(6):3–7. (In Russ.).
  3. Zmitrovich I. V., Psurtseva N. V., Belova N. V. Evolutionary and taxonomic aspects of the search and study of lignindestroying fungi as active producers of oxidative enzymes. Mikologiya i fitopatologiya=Mycology and Phytopathology. 2007;41(1):57–78. (In Russ.).
  4. Zmitrovich I. V., Bondartseva M. A., Arefyev S. P., et al. Professor Solomon P. Wasser and Medicinal Mushroom Science with a special attention to the problems of mycotherapy in oncology. International Journal of Medicinal Mushrooms. 2022;24(1):13–26. https://doi.org/10.1615/IntJMedMushrooms.2021041831
  5. Kusakin O. G., Drozdov A. L., eds. Phylem of the organic beings. Part 1. Prolegomena to the construction of the phylem. Saint Petersburg: Nauka; 1994. 282 p. (In Russ.).
  6. Kusakin O. G., Drozdov A. L., eds. Phylem of the organic beings. Part 2: Prokaryota, Eukaryota: Microsporobiontes, Archemonadobiontes, Euglenobiontes, Myxobiontes, Rhodobiontes, Alveolates, Heterokontes. Saint Petersburg, Nauka, 1997. 381 p. (In Russ.).
  7. Cavalier-Smith T. Amoeboflagellates and mitochondrial cristae in eukaryote evolution: megasystematics of the new protozoan subkingdoms eozoa and neozoa. Archiv für Protistenkunde. 1997;147(3–4):237–258. https://doi.org/10.1016/S0003-9365(97)80051-6
  8. Drozdov A. L. Principle of conservatism of cellular structures as the basis for construction of the multikingdom system of the organic word. In: Abdurakhmonov I. Y., ed. Phylogenetics. London: IntechOpen; 2017. 120 p. https://doi.org/ 10.5772/intechopen.68562
  9. Merezhkovsky K. S., ed. Conspective course of general botany. Part 1. Kazan; 1910. 170 p. (In Russ.).
  10. Chatton E. Pansporella perplexa, amoebien a spores protégées parasite des Daphnies. Réflexions sur la biologie et la phylogenie des Protozoaires. Annales des sciences naturelles, series Zoologie. 1925;8(1–2):5–86.
  11. Hall R. P., ed. Protozoology. New York: Prentice-Hall; 1953. 682 p.
  12. Chadefaud M., ed. Les végétaux non vasculaires (Cryptogamie). T. 1. Paris: Masson; 1960. 1018 p.
  13. Whittaker R. H. New concept of kingdoms of organisms. Science. 1969;163:150–160.
  14. Kusakin O.G., Starobogatov Ya.I. To the problem of the highest taxonomic categories of the organic world. Problems of evolution. T. 3. Novosibirsk; 1973. P. 95–103. (In Russ.).
  15. Starobogatov Ya. I. On the question of the number of kingdoms of eukaryotic organisms. In: Systematics of protozoans and their phylogenetic relations with lower eukaryotes. Leningrad; 1986. P. 4–25. (In Russ.).
  16. Starobogatov Ya. I. The position of flagellated protists in the system of lower eukaryotes. Cytology. 1995;37:1030–1035.
  17. Takhtadjan A.L. Four kingdoms of the organic world. Priroda = Nature. 1973;(2):22–32. (In Russ.).
  18. Margulis L., ed. Symbiosis in cell evolution. Life and its environment on early Earth. San Francisco: W. H. Freeman; 1981. 415 p.
  19. Margulis L., ed. The role of symbiosis in cell evolution. Moscow: Mir; 1983. 352 p. (In Russ.).
  20. Cavalier-Smith T. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. International Journal of Systematic and Evolutionary Microbiology. 2002;52(Pt.1):7–76. https://doi.org/10.1099/00207713-52-1-7
  21. Leontiev D. V., Akulov A. Yu. Ecomorpheme of the organic world: the experience of construction. Zhurnal obshchey biologii = Journal of General Biology. 2004;65(6):500–526. (In Russ.).
  22. Zmitrovich I. V., ed. Epimorphology and tectomorphology of higher fungi. Saint Petersburg; 2010. 272 p. https://doi.org/10.13140/2.1.1880.7364. (In Russ.).
  23. Doweld A., ed. Prosyllabus tracheophytorum: tentamen systematis plantarum vascularium (Tracheophyta). Moscow: Geos; 2001. 200 p.
  24. Zmitrovich I. V., Perelygin V. V., Sytin A. K., et al. Discussion concerning key terms in systematic and applied mycology. International Journal of Medicinal Mushrooms. 2021;23(1):1–8. https://doi.org/10.1615/IntJMedMushrooms.2020037265
  25. Seravin L. N. Macrosystem of flagellates. In: Principles of building a macrosystem of multicellular animals. Leningrad; 1980: 4–22. (In Russ.).
  26. Levine N. D., Corliss J. O., Cox F. E., et al. A new revised classification of Protozoa. Journal of Protozoology. 1980;27(1):37–58.
  27. Karpov S. A., ed. The system of Protista. Omsk, 1990. 192 p. (In Russ.).
  28. Adl S. M., Simpson A. G., Lane C. E., et al. The revised classification of eukaryotes. Journal of Eukaryotic Microbiology. 2012;59(5):429–493. https://doi.org/10.1111/j.1550-7408.2012.00644.x
  29. Adl S. M., Bass D., Lane C. E., et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. Journal of Eukaryotic Microbiology. 2018;66(1):4–119. https://doi.org/10.1111/jeu.12691
  30. Wasser S. P., Kondratieva N. V., Masyuk N. P., et al., eds. The algae. A guide. Kiev; 1989. 608 p. (In Russ.).
  31. Karpov S. A., ed. Protists: A guide to Zoology. Part 1. Saint Petersburg: Nauka; 2000. 679 p. (In Russ.).
  32. Leontiev D. V. General biology: a system of the organic world. Lecture course. Kharkov, 2013. 84 p. (In Russ.).
  33. Yakovlev G. P., Goncharov M. Yu., eds. Botany: a textbook for universities. Saint Petersburg: SpecLit; 2018. 879 p. (In Russ.).
  34. Linné C., ed. Systema Naturae, ed. 13. Vindobonae: Typis Ioannis Thomae; 1767-1770.
  35. Fries E. M., ed. Systema mycologicum, sistens fungorum ordines, genera et species, huc usque cognitas, quas ad normam methodi naturalis determinavit, disposuii atque descripsit. Vol. 1. Gryphiswald; 1821. 520 p.
  36. Bory de Saint-Vincent J.B., ed. Psychodiaire. In: Dictionnaire classique d’Histoire naturelle, 8. Paris; 1925.
  37. Haeckel E., ed. Generelle Morphologie der Organismen. Bd 2. Berlin; 1866. 462 p.
  38. Haeckel E., ed. System der Protisten. Leipzig; 1878. 104 p.
  39. Haeckel E., ed. Die Lebenswunder. Gemeinverständliche Studien über Biologische Phylosophie. Stuttgart; 1904.
  40. Cohn F. Untersuchungen uber Bakterien II. Beiträge zur Biologie der Pflanzen. 1875;3:141–207.
  41. Němec B., ed. Uvod do všeobecne biologie. Praha, 1929.
  42. Taylor F. G. R. Problems in the development of an explicit hypothetical phylogeny of the lower eukaryotes. BioSystems. 1978;10:67–89.
  43. Stewart K. D., Mattox K. R. Phylogeny of phytoflagellates. In: Development in marine biology. V. 2. New York; 1980:433–462.
  44. Cavalier-Smith T. The excavate protozoan phyla Metamonada Grassé emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas): their evolutionary affinities and new higher taxa. International Journal of Systematic and Evolutionary Microbiology. 2003;53(6):1741–1758. https://doi.org/10.1099/ijs.0.02548-0
  45. Seravin L. N. The main types and forms of the fine structure of mitochondrial cristae, the degree of their evolutionary stability (ability to morphological transformations). Cytology. 1993;35:3–34.
  46. Cavalier-Smith T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. International Journal of Systematic and Evolutionary Microbiology. 2002;52(2):297–354. https://doi.org/10.1099/00207713-52-2-297
  47. Roger A. J. Thomas Cavalier-Smith (1942–2021). Current Biology. 2021;31(16):R977–R981. https://doi.org/10.1016/j.cub.2021.07.00
  48. Cavalier-Smith T. The evolutionary origin and phylogeny of microtubules spindles and eukaryotic flagella. BioSystems. 1978;1:93–114.
  49. Cavalier-Smith T. Eukaryote kingdoms: seven or nine? BioSystems. 1981;14:461–484.
  50. Cavalier-Smith T., Chao E. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). Protoplasma. 2020;257:621–753. https://doi.org/10.1007/s00709-019-01442-7
  51. Karatygin I. V. Problems of macrosystematics of fungi. Mikologiya i fitopatologiya. 1999;33(3):150–165. (In Russ.).
  52. Woese C. R., Fox G. E. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences U.S.A. 1977;74(1):5088–5090.
  53. Patterson D. J. Stramenopiles: chromophytes from a protistological perspective. In: The chromophyte algae: problems and perspectives. Oxford: Clarendon Press; 1989:357–379.
  54. Nikolaev S. I., Berney C., Fahrni J. F., et al. The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proceedings of the National Academy of Sciences U.S.A. 2004;101(21):8066–8071.
  55. Shalchian-Tabrizi K., Eikrem W., Klaveness D., et al. Telonemia, a new protist phylum with affinity to chromist lineages. Proceedings of the Royal Society B: Biological Sciences. 2006;273(1595):1833–1842. https://doi.org/10.1098/rspb.2006.3515
  56. Cavalier-Smith T., Chao E., Lewis J. Multiple origins of Heliozoa from flagellate ancestors: New cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista. Molecular Phylogenetics and Evolution. 2015;93:331–362. https://doi.org/10.1016/j.ympev.2015.07.004
  57. Ball S., Colleoni C., Cenci U., et al. The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. Journal of Experimental Botany. 2011;62(6):1775–1801. https://doi.org/10.1093/jxb/erq411
  58. Hampl V., Hug L., Leigh J. W., et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proceedings of the National Academy of Sciences U.S.A. 2009;106(10):3859–3864. https://doi.org/10.1073/pnas.0807880106
  59. Cavalier-Smith T. Principles of protein and lipid targeting in secondary symbiogenesis: Euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. The Journal of Eukaryotic Microbiology. 1999;46(4):347–366. https://doi.org/10.1111/j.1550-7408.1999.tb04614.x
  60. Brown M. W., Sharpe S. C., Silberman J. D., et al. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proceedings of the Royal Society of London B: Biological Sciences. 2013; 280(1769):17–55. https://doi.org/10.1098/rspb.2013.1755
  61. Cavalier-Smith T. The origin of fungi and pseudofungi. In: Evolutionary biology of Fungi. Cambridge: Cambridge University Press; 1987:339–353.
  62. Cavalier-Smith T. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. European Journal of Protistology. 2013;49(2):115–178. https://doi.org/10.1016/j.ejop.2012.06.001
  63. Corliss J.O. The kingdom Protista and its 45 phyla. BioSystems. 1984;17(2):87–126. https://doi.org/10.1016/0303-2647(84)90003-0
  64. Burki F., Roger A. J., Brown M. W., et al. The new tree of eukaryotes. Trends in Ecology and Evolution. 2020;35(1):43–55. https://doi.org/10.1016/j.tree.2019.08.008
  65. Cerón-Romero M. A., Maurer-Alcalá X. X., Grattepanche J. D., et al. PhyloToL: A taxon/gene-Rich phylogenomic pipeline to explore genome evolution of diverse eukaryotes. Molecular Biology and Evolution. 2019;36(8):1831–1842. https://doi.org/10.1093/molbev/msz103
  66. Strassert J. F. H., Irisarri I., Williams T.A., et al. A molecular timescale for eukaryote evolution with implications for the origin of red algalderived plastids. Nature Communications. 2021;12:1–13. https://doi.org/10.1038/s41467-021-22044-z
  67. Roger A. J., Muñoz-Gómez S. A., Kamikawa R. The origin and diversification of mitochondria. Current Biology. 2017;27(21):R1177–R1192. https://doi.org/10.1016/j.cub.2017.09.015
  68. Cavalier-Smith T. Chloroplast evolution: secondary symbiogenesis and multiple losses. Current Biology. 2002;12(2):R62–R64. https://doi.org/10.1016/s0960-9822(01)00675-3
  69. Zmitrovich I. V. A revised eukaryote tree: the case for a euglenozoan root. International Journal on Algae. 2003;5(2):1–38.
  70. Bodył A., Stiller J., Mackiewicz P. Chromalveolate plastids: direct descent or multiple endosymbioses? Trends in Ecology and Evolution. 2009;24:119–121.
  71. Laumer C. E., Fernández R., Lemer S., et al. Revisiting metazoan phylogeny with genomic sampling of all phyla. Proceedings of the Royal Society of London B: Biological Sciences. 2019;286: 20190831.
  72. Tedersoo L., Sánchez-Ramírez S., Kõljalg U., et al. High-level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Diversity. 2018;90:135–159. https://doi.org/10.1007/s13225-018-0401-0(0123456789
  73. Linnaeus C., Salm L., eds. Species Plantarum. T. 2. Holm; 1753.
  74. Decandolle A.P., ed. Prodromus Systematis Naturalis Regni Vegetabilis. Paris: Sumptibus Sociorum Treuttel et Wurtz; 1824.
  75. Vasilyeva L. Systematics in mycology. Bibliotheca Mycologica. 1999;178:1‒253.
  76. Cantino P.D., de Queiroz K., eds. PhyloCode: A phylogenetic code of biological nomenclature. PhyloCode; 2003. 62 p.
  77. Ereshefsky M., ed. The Poverty of the Linnean Hierarchy. A Philosophical Study of Biological Taxonomy. Cambridge: Cambridge University Press; 2007. 328 p.
  78. Kutikova L. A., ed. Fauna of aeration tanks. Leningrad; 1984. 264 p. (In Russ.).
  79. Fleurence J., Levine I., eds. Seaweed in health and disease prevention. Elsevier; 2016. https://doi.org/10.1016/C2014-0-02206-X
  80. Hyde K.D., Xu J., Rapior S., et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity. 2019;97:1–136. https://doi.org/10.1007/s13225-019-00430-9
  81. Knoerzer K., et al, eds. Innovative food processing technologies. Amsterdam: Elsevier; 2016. 300 p.
  82. Biotechnology in Animal agriculture: status and current issues. CRS report for congress. 2011. URL: https://www.everycrsreport.com/files/20110519_RL33334_11709812983bd008a37ba36f9a304a89bb8642cb.pdf
  83. Ragon M., Fontain M. C., Moreira D., et al. Different biogeographic patterns of prokaryotes and microbial eukaryotes in epilithic biofilms. Molecular Ecology. 2012;21:3852–3868. https://doi.org/10.1111/j.1365-294X.2012.05659.x

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. A field of megasystematics and related issues with references to work on overlapping areas

下载 (1MB)
3. Fig. 2. Phylogenetic relationships between eukaryote supergroups revealed as a result of genome-wide comparisons of species samples. The names of supergroups are given in capital letters, orphan groups of flagellates are given in lower case

下载 (1MB)

版权所有 © Zmitrovich I.V., Perelygin V.V., zharikov M., 2021

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


##common.cookie##